The Bulletin of Irkutsk State University Series Mathematics
Latest Publications


TOTAL DOCUMENTS

187
(FIVE YEARS 112)

H-INDEX

2
(FIVE YEARS 1)

Published By Irkutsk State University

2541-8785, 1997-7670

Author(s):  
R. Enkhbat ◽  

Game theory plays an important role in applied mathematics, economics and decision theory. There are many works devoted to game theory. Most of them deals with a Nash equilibrium. A global search algorithm for finding a Nash equilibrium was proposed in [13]. Also, the extraproximal and extragradient algorithms for the Nash equilibrium have been discussed in [3]. Berge equilibrium is a model of cooperation in social dilemmas, including the Prisoner’s Dilemma games [15]. The Berge equilibrium concept was introduced by the French mathematician Claude Berge [5] for coalition games. The first research works of Berge equilibrium were conducted by Vaisman and Zhukovskiy [18; 19]. A method for constructing a Berge equilibrium which is Pareto-maximal with respect to all other Berge equilibriums has been examined in Zhukovskiy [10]. Also, the equilibrium was studied in [16] from a view point of differential games. Abalo and Kostreva [1; 2] proved the existence theorems for pure-strategy Berge equilibrium in strategic-form games of differential games. Nessah [11] and Larbani, Tazdait [12] provided with a new existence theorem. Applications of Berge equilibrium in social science have been discussed in [6; 17]. Also, the work [7] deals with an application of Berge equilibrium in economics. Connection of Nash and Berge equilibriums has been shown in [17]. Most recently, the Berge equilibrium was examined in Enkhbat and Batbileg [14] for Bimatrix game with its nonconvex optimization reduction. In this paper, inspired by Nash and Berge equilibriums, we introduce a new notion of equilibrium so-called Anti-Berge equilibrium. The main goal of this paper is to examine Anti-Berge equilibrium for bimatrix game. The work is organized as follows. Section 2 is devoted to the existence of Anti-Berge equilibrium in a bimatrix game for mixed strategies. In Section 3, an optimization formulation of Anti-Berge equilibrium has been formulated.


Author(s):  
B. E. Durakov ◽  
◽  
A. I. Sozutov ◽  

A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.


Author(s):  
D.Yu. Emel’yanov ◽  

Algebras of distributions of binary isolating and semi-isolating formulas are derived objects for given theory and reflect binary formula relations between realizations of 1-types. These algebras are associated with the following natural classification questions: 1) for a given class of theories, determine which algebras correspond to the theories from this class and classify these algebras; 2) to classify theories from a given class depending on the algebras defined by these theories of isolating and semi-isolating formulas. Here the description of a finite algebra of binary isolating formulas unambiguously entails a description of the algebra of binary semi-isolating formulas, which makes it possible to track the behavior of all binary formula relations of a given theory. The paper describes algebras of binary formulae for root products. The Cayley tables are given for the obtained algebras. Based on these tables, theorems describing all algebras of binary formulae distributions for the root multiplication theory of regular polygons on an edge are formulated. It is shown that they are completely described by two algebras.


Author(s):  
N. A. Peryazev ◽  

We consider systems of inclusions with unknowns and coefficients in multioperations of finite rank. An algorithm for solving such systems by the method of reduction to Boolean equations using superposition representation of multioperations by Boolean space matrices is given. Two methods for solving Boolean equations with many unknowns are described for completeness. The presentation is demonstrated by examples: the representation of the superposition of multioperations by Boolean space matrices; solving a Boolean equation by analytical and numerical methods; and finding solutions to an inclusion with one unknown. The resulting algorithm can be applied to the development of logical inference systems for multioperator logics.


Author(s):  
M. M. Turov ◽  
◽  
V. E. Fedorov ◽  
B. T. Kien ◽  
◽  
...  

The issues of well-posedness of linear inverse coefficient problems for multi-term equations in Banach spaces with fractional Riemann – Liouville derivatives and with bounded operators at them are considered. Well-posedness criteria are obtained both for the equation resolved with respect to the highest fractional derivative, and in the case of a degenerate operator at the highest derivative in the equation. Two essentially different cases are investigated in the degenerate problem: when the fractional part of the order of the second-oldest derivative is equal to or different from the fractional part of the order of the highest fractional derivative. Abstract results are applied in the study of inverse problems for partial differential equations with polynomials from a self-adjoint elliptic differential operator with respect to spatial variables and with Riemann – Liouville derivatives in time.


Author(s):  
T. Aiki ◽  
◽  
C. Kosugi ◽  

We consider the initial boundary value problem for the beam equation with the nonlinear strain. In our previous work this problem was proposed as a mathematical model for stretching and shrinking motions of the curve made of the elastic material on the plane. The aim of this paper is to establish uniqueness and existence of weak solutions. In particular, the uniqueness is proved by applying the approximate dual equation method.


Author(s):  
A.I. Kozhanov ◽  
◽  
A.V. Dyuzheva ◽  
◽  

The aim of this paper is to study the solvability of solutions of non-local problems with integral conditions in spatial variables for high-order linear parabolic equations in the classes of regular solutions (which have all the squared derivatives generalized by S. L. Sobolev that are included in the corresponding equation) . Previously, similar problems were studied for high-order parabolic equations, either in the one-dimensional case, or when certain conditions of smallness on the coefficients are met equations. In this paper, we present new results on the solvability of non-local problems with integral spatial variables for high-order parabolic equations a) in the multidimensional case with respect to spatial variables; b) in the absence of smallness conditions. The research method is based on the transition from a problem with non-local integral conditions to a problem with classical homogeneous conditions of the first or second kind on the side boundary for a loaded integro-differential equation. At the end of the paper, some generalizations of the obtained results will be described.


Author(s):  
G.U. Urazboev ◽  
◽  
A.A. Reyimberganov ◽  
A.K. Babadjanova ◽  
◽  
...  

This paper is concerned with studying the matrix nonlinear Schr¨odinger equation with a self-consistent source. The source consists of the combination of the eigenfunctions of the corresponding spectral problem for the matrix Zakharov-Shabat system which has not spectral singularities. The theorem about the evolution of the scattering data of a non-self-adjoint matrix Zakharov-Shabat system which potential is a solution of the matrix nonlinear Schr¨odinger equation with the self-consistent source is proved. The obtained results allow us to solve the Cauchy problem for the matrix nonlinear Schr¨odinger equation with a self-consistent source in the class of the rapidly decreasing functions via the inverse scattering method. A one-to-one correspondence between the potential of the matrix Zakharov-Shabat system and scattering data provide the uniqueness of the solution of the considering problem. A step-by-step algorithm for finding a solution to the problem under consideration is presented.


Author(s):  
A.A. Stepanova ◽  

This work relates to the structural act theory. The structural theory includes the description of acts over certain classes of monoids or having certain properties, for example, satisfying some requirement for the congruence lattice. The congruences of universal algebra is the same as the kernels of homomorphisms from this algebra into other algebras. Knowledge of all congruences implies the knowledge of all the homomorphic images of the algebra. A left $S$–act over monoid $S$ is a set $A$ upon which $S$ acts unitarily on the left. In this paper, we consider $S$–acts over linearly ordered and over well-ordered monoids, where a linearly ordered monoid $S$ is a linearly ordered set with a minimal element and with a binary operation $ \ max$, with respect to which $S$ is obviously a commutative monoid; a well-ordered monoid $S$ is a well-ordered set with a binary operation $ \ max$, with respect to which $S$ is also a commutative monoid. The paper is a continuation of the work of the author in co-authorship with M.S. Kazak, which describes $S$–acts over linearly ordered monoids with a linearly ordered congruence lattice and $S$-acts over a well-ordered monoid with distributive congruence lattice. In this article, we give the description of S-acts over a well-ordered monoid such that the corresponding congruence lattice is modular.


Author(s):  
А. А. Shlepkin ◽  
◽  
I. V. Sabodakh ◽  

One of the interesting classes of mixed groups ( i.e. groups that can contain both elements of finite order and elements of infinite order) is the class of Shunkov groups. The group $G$ is called Shunkov group if for any finite subgroup $H$ of $G$ in the quotient group $N_G(H)/H$, any two conjugate elements of prime order generate a finite group. When studying the Shunkov group $G$, a situation often arises when it is necessary to move to the quotient group of the group $G$ by some of its normal subgroup $N$. In which cases is the resulting quotient group $G/N$ again a Shunkov group? The paper gives a positive answer to this question, provided that the normal subgroup $N$ is locally finite and the orders of elements of the subgroup $N$ are mutually simple with the orders of elements of the quotient group $G/N$. Let $ \mathfrak{X}$ be a set of groups. A group $G$ is saturated with groups from the set $ \mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $ G$ that is isomorphic to some group of $\mathfrak{X}$ . If all elements of finite orders from the group $G$ are contained in a periodic subgroup of the group $G$, then it is called the periodic part of the group $G$ and is denoted by $T(G)$. It is proved that the Shunkov group saturated with finite linear and unitary groups of degree 3 over finite fields has a periodic part that is isomorphic to either a linear or unitary group of degree 3 on a suitable locally finite field. \end{abstracte}


Sign in / Sign up

Export Citation Format

Share Document