scholarly journals VIRTUAL SCREENING OF GINKGO BILOBA FOR THERAPEUTIC POTENTIALS AGAINST PARKINSON’S DISEASE

2016 ◽  
Vol 3 (1) ◽  
pp. 6-11
Author(s):  
Kavitha V ◽  
Jone Kirubavathy S ◽  
Sivaramkumar M.S ◽  
Velmurugan R

Parkinson's disease (PD) is a neurodegenerative disorder that affects 2% of the population older than 60 years. Monoamine Oxidase B (MAO-B) inhibitors improve the symptoms of Parkinson's disease and can delay the progress. Inhibition of MAO-B, further prevent breakdown of dopamine in the brain and reducethe motor symptoms associated with PD. Ginkgo biloba has a number of therapeutic properties and contains phytonutrients that helps in improvement of neurological disorders. In present study, phytonutrients of Ginkgo biloba namely Myricetin, Quercetin, Isorhamnetin, Kaempferol, Ginkgolides A-C, and Ginkgolide J were selected for Molecular docking against Monoamine Oxidase-B enzyme. The Molecular Docking studies were performed using Autodock 4.2 and interaction between MAO-B and compounds were analyzed. The efficiency of the compound was screened based on the binding energy existing between the protein and inhibitor. The docking studies show that the phytochemicals of Ginkgo biloba against MAO-B were quite effective. The potential compound can be subjected to further clinical trials and can be an alternative in the future treatment of Parkinson’s disease.

Author(s):  
Love Kumar

Parkinson’s disease (PD) is a common known neurodegenerative disorder with unknown etiology. It was estimated about 0.3% prevalence in the U.S population and enhance to 4 to 5% in older than 85 years. All studies were depending on the molecular docking where all ligands and protein PARK7 (PDB ID: 2RK3) were interacted by docked process. Some natural compounds was selected such as Harmine, Alloxan, Alpha spinasterol, Myrcene, and Vasicinone and PARK7 (PDB ID: 2RK3) protein. According to the PyRx and SWISS ADME result, Harmine was the only ligand which was showing minimum binding affinity. AutoDock Vina software was used for docking process between ligand (Harmine) and receptor protein PARK7 (PDB ID: 2RK3). The result was visualized under PyMol. Harmine was inhibiting the activity of PARK7 (PDB ID: 2RK3) and it may be used for the treatment of PD in future prospect after its in vitro and in vivo studies.


2018 ◽  
Vol 56 (5) ◽  
pp. 54-57

▼ Safinamide (Xadago - Zambon S.p.A) is a monoamine-oxidase B (MAO-B) inhibitor licensed as add-on therapy for people with idiopathic Parkinson’s disease who are experiencing motor fluctuations with levodopa.1 Currently there is no cure for Parkinson’s disease and drugs are used to reduce motor symptoms and improve daily activities.2,3 Here, we review the evidence for this MAO-B inhibitor.


Neurology ◽  
1993 ◽  
Vol 43 (10) ◽  
pp. 1984-1984 ◽  
Author(s):  
J. S. Fowler ◽  
N. D. Volkow ◽  
J. Logan ◽  
D. J. Schlyer ◽  
R. R. MacGregor ◽  
...  

1984 ◽  
Vol 22 (10) ◽  
pp. 37-40

The symptoms of idiopathic Parkinson’s disease are due mainly to progressive degeneration of the dopaminergic nigro-striatal pathways in the brain. The drugs which can help fall into five categories: dopamine replacement, using dopa with a decarboxylase inhibitor; a dopamine agonist, bromocriptine;1 selegiline, recently introduced, which inhibits monoamine oxidase B; anticholinergic drugs; and amantadine.2 This article discusses recent ideas about the management of Parkinson’s disease, particularly about levodopa dosage, bromocriptine and selegiline.


2020 ◽  
Vol 8 (09) ◽  
pp. 25-31
Author(s):  
W. Soufi ◽  
M. Merad ◽  
F. BOUKLI Hacene ◽  
S. Ghalem

Inhibition of the enzyme Monoamine oxidase (MAO) is an important approach in the treatment of Parkinson’s disease. A series of indole derivatives were synthesised and evaluated as inhibitors of MAO-B may give insight to develop new ways of antiparkinson drug, In general, the derivatives were found to be selective MAO-B inhibitors with IC50 values . MAO-B inhibitors,  are considered useful in the therapy of Parkinson’s disease since oxidation by MAO-B represents a major catabolic pathway of dopamine in the central nervous system .                      Our goal of research is to study the inhibition of MAO-B by molecular modeling methods. Different molecular modeling tools are used to perform this work (molecular mechanics, molecular dynamics and molecular docking by two programms MDV ( molegro virtual docker) and MOE (modelling Opering Environment. The results obtained from this work, into which the inhibition of MAO-B by molecular modeling methods was elucidated, allow us to conclude that indole derivatives are promising reversible MAO-B inhibitors with a possible role in the treatment of neurodegenerative diseases such as Parkinson’s disease (PD). 


2020 ◽  
Vol 16 (4) ◽  
pp. 420-434
Author(s):  
Nageen Mubashir ◽  
Rida Fatima ◽  
Sadaf Naeem

Background: Parkinson’s disease is characterized by decreased level of dopaminergic neurotransmitters and this decrease is due to the degradation of dopamine by protein Monoamine Oxidase B (MAO-B). In order to treat Parkinson’s disease, MAO-B should be inhibited. Objective: To find out the novel phytochemicals from plant Ocimum basilicum that can inhibit MAO-B by using the in silico methods. Methods: The data of chemical constituents from plant Ocimum basilicum was collected and inhibitory activity of these phytochemicals was then predicted by using the Structure-Based (SB) and Ligand-Based Virtual Screening (LBVS) methods. Molecular docking, one of the common Structure-Based Virtual Screening method, has been used during this search. Traditionally, molecular docking is used to predict the orientation and binding affinity of the ligand within the active site of the protein. Molegro Virtual Docker (MVD) software has been used for this purpose. On the other hand, Random Forest Model, one of the LBVS method, has also been used to predict the activity of these chemical constituents of Ocimum basilicum against the MAO-B. Results: During the docking studies, all the 108 compounds found in Ocimum basilicum were docked within the active site of MAO-B (PDB code: 4A79) out of which, 57 compounds successfully formed the hydrogen bond with tyr 435, a crucial amino acid for the biological activity of the enzyme. Rutin (-182.976 Kcal/mol), Luteolin (-163.171 Kcal/mol), Eriodictyol-7-O-glucoside (- 160.13 Kcal/mol), Rosmarinic acid (-133.484 Kcal/mol) and Isoquercitrin (-131.493 Kcal/mol) are among the top hits with the highest MolDock score along with hydrogen interaction with tyr 435. Using the RF model, ten compounds out of 108 chemical constituent of Ocimum basilicum were predicted to be active, Apigenin (1.0), Eriodictyol (1.0), Orientin (0.876), Kaempferol (0.8536), Luteolin (0.813953) and Rosmarinic-Acid (0.7738095) are predicted to be most active with the highest RF score. Conclusion: The comparison of the two screening methods show that the ten compounds that were predicted to be active by the RF model, are also found in top hits of docking studies with the highest score. The top hits obtained during this study are predicted to be the inhibitor of MAO-B, thus, could be used further for the development of drugs for the treatment of Parkinson’s disease (PD).


2021 ◽  
pp. 1-17
Author(s):  
Yu-Yan Tan ◽  
Peter Jenner ◽  
Sheng-Di Chen

Monoamine oxidase-B (MAO-B) inhibitors are commonly used for the symptomatic treatment of Parkinson’s disease (PD). MAO-B inhibitor monotherapy has been shown to be effective and safe for the treatment of early-stage PD, while MAO-B inhibitors as adjuvant drugs have been widely applied for the treatment of the advanced stages of the illness. MAO-B inhibitors can effectively improve patients’ motor and non-motor symptoms, reduce “OFF” time, and may potentially prevent/delay disease progression. In this review, we discuss the effects of MAO-B inhibitors on motor and non-motor symptoms in PD patients, their mechanism of action, and the future development of MAO-B inhibitor therapy.


Sign in / Sign up

Export Citation Format

Share Document