scholarly journals Basic Comparison And Evaluation Of Functionality AC-AC Matrix Converter Concepts For HEV Vehicle - Part I

Author(s):  
Branislav Dobrucky ◽  
Slavomir Kascak ◽  
Michal Prazenica ◽  
Roman Konarik

The paper deals with the direct AC-AC propulsion system and compares two matrix converter concepts with fivephase traction induction motors (IM) for the hybrid electric vehicle (HEV) including electronic differential. The first one consists of [3x5] matrix converter and [3x1] active PWM rectifier (4Q-converter) for full power performance. The second one comprises one [3x5] matrix converter for full power and auxiliary [0x5] matrix converter for partial output power. Configurations of [3x5] + [0x5] MxC converters with five-phase motor(s) are not analyzed in available literature so far. The advantage of the proposed connection is in supposed higher efficiency of matrix converter then clasiccal VSI one. Part I deals with a theoretical study of converter concepts for hybrid electric vehicle. Based on simulation results the comparison and evaluation of the property and quality of the quantities of different type of the matrix powertrain are discussed in Part II.

Author(s):  
Branislav Dobrucky ◽  
Slavomir Kascak ◽  
Michal Prazenica ◽  
Roman Konarik

The paper deals with a modeling and simulation of the direct AC-AC propulsion system and compares two matrix converter concepts with five-phase traction induction motors (IM) for the hybrid electric vehicle (HEV). The simulation results of [3x5] matrix converter and 4Q-converter are done using Matlab-Simulink environment. Part I deals with a theoretical study of converter concepts for hybrid electric vehicle, since the configurations of [3x5]+[0x5] matrix converters with five-phase motor(s) have not been analyzed so far. Based on simulation results the comparison and evaluation of the property and quality of the quantities of different type of the matrix powertrain are discussed in Part II.


2013 ◽  
Vol 288 ◽  
pp. 142-147 ◽  
Author(s):  
Shang An Gao ◽  
Xi Ming Wang ◽  
Hong Wen He ◽  
Hong Qiang Guo ◽  
Heng Lu Tang

Fuel cell hybrid electric vehicle (FCHEV) is one of the most efficient technologies to solve the problems of the energy shortage and the air pollution caused by the internal-combustion engine vehicles, and its performance strongly depends on the powertrains’ matching and its energy control strategy. The theoretic matching method only based on the theoretical equation of kinetic equilibrium, which is a traditional method, could not take fully use of the advantages of FCHEV under a certain driving cycle because it doesn’t consider the target driving cycle. In order to match the powertrain that operates more efficiently under the target driving cycle, the matching method based on driving cycle is studied. The powertrain of a fuel cell hybrid electric bus (FCHEB) is matched, modeled and simulated on the AVL CRUISE. The simulation results show that the FCHEB has remarkable power performance and fuel economy.


2011 ◽  
Vol 130-134 ◽  
pp. 2180-2184
Author(s):  
Yan Ping Zheng ◽  
Tian Tian ◽  
Zhengang He

Based on the theory of HEV (Hybrid Electric Vehicle) and the idea of reverse simulation, the simulation model of the parallel HEV is established in MATLAB and the estimation of the energy efficiency, the power performance and the fuel economy of HEV is achieved, which provides reference for the performance estimation of parallel HEV. At the same time the definition and the estimating method about HEV energy efficiency were mentioned in this paper and the energy efficiency can be achieved by the simulation model. The results of the simulation show that this estimating method has certain practicability and convenience.


2014 ◽  
Vol 536-537 ◽  
pp. 1078-1082
Author(s):  
Zi Ning Tang ◽  
Hong Wei Zhang ◽  
Zhi Guo Kong ◽  
Wei Wang

Hybrid Control Unit (HCU) is the core control component of hybrid electric vehicle (HEV). According to the input signals such as driver attempts, accelerate pedal position, gear and brake pedal position etc, the HCU can calculate the output parameters such as engine output power, motor and generator torque etc, Therefore, the design of HCU will directly influence the power performance, fuel economy, reliability and other performances of hybrid electric vehicle. This HCU is designed based on MC9S12DP512 microprocessor. In this paper, first, the function requirement and design philosophy of the HCU is explained. Then, according to the function, the HCU is divided into power supply module, CAN communication module, MCU module, digital input module, AD converter module etc. And the function and circuit principle of each function module are explained respectively. Finally, the design method related to improve HCU EMC performance is illustrated.


Energies ◽  
2015 ◽  
Vol 8 (5) ◽  
pp. 3849-3866 ◽  
Author(s):  
Yeongsu Bak ◽  
Eunsil Lee ◽  
Kyo-Beum Lee

Sign in / Sign up

Export Citation Format

Share Document