battery modeling
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 53)

H-INDEX

17
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Shahenda M. Abdelhafiz ◽  
A. M. AbdelAty ◽  
M. E. Fouda ◽  
A. G. Radwan

Author(s):  
Ines Baccouche ◽  
Sabeur Jemmali ◽  
Bilal Manai ◽  
Alexandros Nikolian ◽  
Noshin Omar ◽  
...  

2021 ◽  
Vol 513 ◽  
pp. 230526
Author(s):  
Renato G. Nascimento ◽  
Matteo Corbetta ◽  
Chetan S. Kulkarni ◽  
Felipe A.C. Viana

2021 ◽  
Vol 12 (3) ◽  
pp. 120
Author(s):  
Muhammad Uzair ◽  
Ghulam Abbas ◽  
Saleh Hosain

Energy shortage and environmental pollution issues can be reduced considerably with the development and usage of electric vehicles (EVs). However, electric vehicle performance and battery lifespan depend on a suitable battery arrangement to meet the various battery performance demands. The safety, reliability, and efficiency of EVs largely depends on the constant monitoring of the batteries and management of battery packs. This work comprehensively reviews different aspects of battery management systems (BMS), i.e., architecture, functions, requirements, topologies, fundamentals of battery modeling, different battery models, issues/challenges, recommendations, and active and passive cell balancing approaches, etc., as compared to the existing works which normally discuss one or two aspects only. The work describes BMS functions, battery models and their comparisons in detail for an efficient operation of the battery pack. Similarly, the work presents a comprehensive overview of issues and challenges faced by BMS and also provides recommendations to address these challenges. Cell balancing is very important for the battery performance and in this work various cell balancing methodologies and their comparisons are also presented in detail. Modeling of a cell balancer is presented and a comparative study is also carried out for active and passive cell balance technique in MATLAB/Simulink with an eight cell battery packcell balancing approach. The result shows that the active cell balancing technique is more advantageous than passive balancing for electrical vehicles using lithium-ion batteries.


2021 ◽  
Vol 10 (4) ◽  
pp. 1793-1802
Author(s):  
Fahad Rasool ◽  
Micheal Drieberg ◽  
Nasreen Badruddin ◽  
Patrick Sebastian ◽  
Christopher Teh Jun Qian

Modeling the behavior of the battery is non-trivial. Nevertheless, an accurate battery model is required in the design and testing of systems such wireless sensor network (WSN) and internet of things (IoT). This paper presents the one resistive-capacitance (1RC) battery model with simple parameterization technique for nickel metal hydride (NiMH). This model offers a good trade-off between accuracy and parameterization effort. The model’s parameters are extracted through the pulse measurement technique and implemented in a physical and dynamic simulator. Finally, the performance of the model is validated with the real-life NiMH battery by applying current pulses and real wireless sensor node current profiles. The results of the voltage response obtained from both the model and experiments showed excellent accuracy, with difference of less than 2%.


Batteries ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Manh-Kien Tran ◽  
Andre DaCosta ◽  
Anosh Mevawalla ◽  
Satyam Panchal ◽  
Michael Fowler

Lithium-ion (Li-ion) batteries are an important component of energy storage systems used in various applications such as electric vehicles and portable electronics. There are many chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order for the battery applications to operate safely and effectively, battery modeling is very important. The equivalent circuit model (ECM) is a battery model often used in the battery management system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited model for NMC and LMO was the 1RC ECM. The results from this study showed that different ECMs would be suited for different Li-ion battery chemistries, which should be an important factor to be considered in real-world battery and BMS applications.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4115
Author(s):  
Marco Quartulli ◽  
Amaia Gil ◽  
Ane Miren Florez-Tapia ◽  
Pablo Cereijo ◽  
Elixabete Ayerbe ◽  
...  

Battery Cell design and control have been widely explored through modeling and simulation. On the one hand, Doyle’s pseudo-two-dimensional (P2D) model and Single Particle Models are among the most popular electrochemical models capable of predicting battery performance and therefore guiding cell characterization. On the other hand, empirical models obtained, for example, by Machine Learning (ML) methods represent a simpler and computationally more efficient complement to electrochemical models and have been widely used for Battery Management System (BMS) control purposes. This article proposes ML-based ensemble models to be used for the estimation of the performance of an LIB cell across a wide range of input material characteristics and parameters and evaluates 1. Deep Learning ensembles for simulation convergence classification and 2. structured regressors for battery energy and power predictions. The results represent an improvement on state-of-the-art LIB surrogate models and indicate that deep ensembles represent a promising direction for battery modeling and design.


Sign in / Sign up

Export Citation Format

Share Document