scholarly journals Mobile Forensics for Cyberbullying Detection using Term Frequency - Inverse Document Frequency (TF-IDF)

2020 ◽  
Vol 5 (2) ◽  
pp. 68
Author(s):  
Imam Riadi ◽  
Sunardi Sunardi ◽  
Panggah Widiandana
Author(s):  
Sara Ramezanian ◽  
Tommi Meskanen ◽  
Valtteri Niemi

Children and teenagers that have been victims of bullying can possibly suffer its psychological effects for a lifetime. With the increase of online social media, cyberbullying incidents have been increased as well. In this paper, the authors discuss how they can detect cyberbullying with AI techniques, using term frequency-inverse document frequency. The authors label messages as benign or bully. The authors want their method of cyberbullying detection to be privacy-preserving, such that the subscribers' benign messages should not be revealed to the operator. Moreover, the operator labels subscribers as normal, bully, and victim. The operator utilizes policy control in 5G networks to protect victims of cyberbullying from harmful traffic.


Author(s):  
Mariani Widia Putri ◽  
Achmad Muchayan ◽  
Made Kamisutara

Sistem rekomendasi saat ini sedang menjadi tren. Kebiasaan masyarakat yang saat ini lebih mengandalkan transaksi secara online dengan berbagai alasan pribadi. Sistem rekomendasi menawarkan cara yang lebih mudah dan cepat sehingga pengguna tidak perlu meluangkan waktu terlalu banyak untuk menemukan barang yang diinginkan. Persaingan antar pelaku bisnis pun berubah sehingga harus mengubah pendekatan agar bisa menjangkau calon pelanggan. Oleh karena itu dibutuhkan sebuah sistem yang dapat menunjang hal tersebut. Maka dalam penelitian ini, penulis membangun sistem rekomendasi produk menggunakan metode Content-Based Filtering dan Term Frequency Inverse Document Frequency (TF-IDF) dari model Information Retrieval (IR). Untuk memperoleh hasil yang efisien dan sesuai dengan kebutuhan solusi dalam meningkatkan Customer Relationship Management (CRM). Sistem rekomendasi dibangun dan diterapkan sebagai solusi agar dapat meningkatkan brand awareness pelanggan dan meminimalisir terjadinya gagal transaksi di karenakan kurang nya informasi yang dapat disampaikan secara langsung atau offline. Data yang digunakan terdiri dari 258 kode produk produk yang yang masing-masing memiliki delapan kategori dan 33 kata kunci pembentuk sesuai dengan product knowledge perusahaan. Hasil perhitungan TF-IDF menunjukkan nilai bobot 13,854 saat menampilkan rekomendasi produk terbaik pertama, dan memiliki keakuratan sebesar 96,5% dalam memberikan rekomendasi pena.


Author(s):  
Ni Komang Widyasanti ◽  
I Ketut Gede Darma Putra ◽  
Ni Kadek Dwi Rusjayanthi

Penyebaran informasi dalam bentuk teks digital semakin tak terbendung seiring perkembangan waktu. Kebutuhan akan membaca informasi juga tidak pernah berkurang, berdasarkan riset yang dilakukan pada lima kota besar di Indonesia sepanjang tahun 2015 oleh okezone.com menyatakan persentasi konsumsi berita secara online mencapai 96%. Salah satu solusi untuk mempermudah dan mempercepat pencarian informasi yang sesuai adalah dengan meringkas konten tersebut. TFIDF (Term Frequency Inverse Document Frequency) merupakan metode pembobotan dalam bentuk integrasi antar term frequency dengan inverse document frequency. Metode TFIDF digunakan pada penelitian ini untuk memilih fitur sebagai hasil ringkasan, dengan penerapannya pada seleksi fitur bobot kata. Nilai kepuasan pembaca sebesar 61,94%. Durasi ringkasan rata-rata 68,25 detik dengan jumlah kalimat dan kata rata-rata 31,875 dan 387,375. Penelitian dilakukan menggunakan jenis dokumen fiksi dan non-fiksi serta seleksi fitur disetiap paragrafnya, yang membedakannya dengan penelitian terkait sebelumnya. Kata Kunci: Ringkasan Teks Otomatis, Pembobotan TFIDF, Bahasa Indonesia


2019 ◽  
Vol 161 ◽  
pp. 509-515 ◽  
Author(s):  
Nilam Nur Amir Sjarif ◽  
Nurulhuda Firdaus Mohd Azmi ◽  
Suriayati Chuprat ◽  
Haslina Md Sarkan ◽  
Yazriwati Yahya ◽  
...  

Author(s):  
Manuel Baena-Garcia ◽  
Jose M. Carmona-Cejudo ◽  
Gladys Castillo ◽  
Rafael Morales-Bueno

Sign in / Sign up

Export Citation Format

Share Document