scholarly journals Comparison of spallation reaction models using MCDA

2018 ◽  
Vol 2018 (2) ◽  
pp. 157-168
Author(s):  
Andrey Alekseevich Andrianov ◽  
Yurij Aleksandrovich Korovin ◽  
Ilya Sergeevich Kuptsov ◽  
Alexander Yurevitch Konobeev ◽  
Olga Nikolaevna Andrianova
2017 ◽  
Vol 146 ◽  
pp. 12007 ◽  
Author(s):  
Andrey Andrianov ◽  
Olga Andrianova ◽  
Alexandr Konobeev ◽  
Yury Korovin ◽  
Ilya Kuptsov

2018 ◽  
Vol 4 (4) ◽  
pp. 229-234
Author(s):  
Andrey Andrianov ◽  
Yury Korovin ◽  
Ilya Kuptsov ◽  
Aleksandr Konobeyev ◽  
Olga Andrianova

The paper presents the results of a comparative evaluation of the predictive ability of seventeen spallation reaction models (CEM02, CEM03, Phits/jam, Cascade/ASF, Phits/Bertini, Bertini/Dresner, Cascade-4, INCL4/Abla, INCL4/smm, geant4/binary, Isabela/smm, geant4/Bertini, Isabela/Abla, INCL4/Gemini, CASCADeX-1.2, Isabel/Gemini, Phits/jqmd) for the interaction reactions of high-energy protons with natPb nuclei using the most popular methods of multiple-criteria decision analysis (MAVT/MAUT, AHP, TOPSIS, PROMETHEE). Multiple-criteria decision analysis methods are used extensively to support decision-making in various fields of knowledge, including nuclear physics and engineering, when aggregating conflicting criteria with due account for the expert and decision-maker opinions. Four factors of computational and experimental agreement (R, D, F, H), most commonly used in this field of knowledge, have been employed as the criteria, which, having been aggregated as part of applying respective multiple-criteria decision analysis methods, make it possible to estimate the integral measure of the computational model effectiveness and to rank the models, using this as the basis, depending on the degree of their predictive ability. It has been demonstrated that the ranking results obtained using different multiple-criteria decision analysis methods show a good agreement. Using a stochastic approach to the generation of weights, the models were ranked in conditions with the absence of data on the significance of individual agreement factors. Recommendations are presented for using the multiple-criteria decision analysis methods to address tasks involved in the preparation of nuclear data in conditions of a multiple-factor evaluation of discrepancies between calculations and experiment.


2019 ◽  
Vol 5 (1) ◽  
pp. 89-89
Author(s):  
Andrey A. Andrianov ◽  
Yury A. Korovin ◽  
Ilya S. Kuptsov ◽  
Aleksandr Yu. Konobeyev ◽  
Olga N. Andrianova

Corrigenda: Comparison of spallation reaction models based on multiple-criteria decision analysis. https://doi.org/10.3897/nucet.4.31869


2021 ◽  
Vol 5 (3) ◽  
pp. 36
Author(s):  
Leilei Dong ◽  
Italo Mazzarino ◽  
Alessio Alexiadis

A comprehensive review is carried out on the models and correlations for solid/fluid reactions that result from a complex multi-scale physicochemical process. A simulation of this process with CFD requires various complicated submodels and significant computational time, which often makes it undesirable and impractical in many industrial activities requiring a quick solution within a limited time frame, such as new product/process design, feasibility studies, and the evaluation or optimization of the existing processes, etc. In these circumstances, the existing models and correlations developed in the last few decades are of significant relevance and become a useful simulation tool. However, despite the increasing research interests in this area in the last thirty years, there is no comprehensive review available. This paper is thus motivated to review the models developed so far, as well as provide the selection guidance for model and correlations for the specific application to help engineers and researchers choose the most appropriate model for feasible solutions. Therefore, this review is also of practical relevance to professionals who need to perform engineering design or simulation work. The areas needing further development in solid–fluid reaction modelling are also identified and discussed.


Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 113
Author(s):  
Stephan Daniel Schwoebel ◽  
Thomas Mehner ◽  
Thomas Lampke

Three-component systems of diffusion–reaction equations play a central role in the modelling and simulation of chemical processes in engineering, electro-chemistry, physical chemistry, biology, population dynamics, etc. A major question in the simulation of three-component systems is how to guarantee non-negative species distributions in the model and how to calculate them effectively. Current numerical methods to enforce non-negative species distributions tend to be cost-intensive in terms of computation time and they are not robust for big rate constants of the considered reaction. In this article, a method, as a combination of homotopy methods, modern augmented Lagrangian methods, and adaptive FEMs is outlined to obtain a robust and efficient method to simulate diffusion–reaction models with non-negative concentrations. Although in this paper the convergence analysis is not described rigorously, multiple numerical examples as well as an application to elctro-deposition from an aqueous Cu2+-(β-alanine) electrolyte are presented.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 206
Author(s):  
María Consuelo Casabán ◽  
Rafael Company ◽  
Lucas Jódar

This paper deals with the search for reliable efficient finite difference methods for the numerical solution of random heterogeneous diffusion reaction models with a finite degree of randomness. Efficiency appeals to the computational challenge in the random framework that requires not only the approximating stochastic process solution but also its expectation and variance. After studying positivity and conditional random mean square stability, the computation of the expectation and variance of the approximating stochastic process is not performed directly but through using a set of sampling finite difference schemes coming out by taking realizations of the random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic expressions collapsing the approach is avoided keeping reliability. Results are simulated and a procedure for the numerical computation is given.


2010 ◽  
Vol 43 (40) ◽  
pp. 405002
Author(s):  
Paolo Politi ◽  
Daniel ben-Avraham
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document