2012 ◽  
Vol 169 (13) ◽  
pp. 1227-1233 ◽  
Author(s):  
Andrei Shutov ◽  
Angela Rudakova ◽  
Sergei Rudakov ◽  
Irina Kakhovskaya ◽  
Anna Schallau ◽  
...  

1991 ◽  
Vol 66 (03) ◽  
pp. 310-314 ◽  
Author(s):  
David C Sane ◽  
Tammy L Moser ◽  
Charles S Greenberg

SummaryVitronectin (VN) stabilizes plasminogen activator inhibitor type 1 (PAI-1) activity and prevents the fibrin(ogen)-induced acceleration of plasminogen activation by t-PA. These antifibrinolytic activities as well as other functions are mediated by the glycosaminoglycan (GAG) binding domain of VN. Since the GAG binding region is rich in arginyl and lysyl residues, it is a potential target for enzymes such as plasmin. In this paper, the dose and time-dependent proteolysis of VN by plasmin is demonstrated. The addition of urokinase or streptokinase (200 units/ml) to plasma also produced proteolysis of VN. With minimal proteolysis, the 75 kDa band was degraded to a 62-65 kDa form of VN. This minimal proteolysis destroyed the binding of [3H]-heparin to VN and reversed the neutralization of heparin by VN.Thus, the plasmin-mediated proteolysis of the GAG binding activity of VN could destroy the antifibrinolytic activity of VN during physiologic conditions and during thrombolytic therapy. Furthermore, other functions of VN in complement and coagulation systems that are mediated by the GAG binding domain may be destroyed by plasmin proteolysis.


1993 ◽  
Vol 69 (05) ◽  
pp. 441-447 ◽  
Author(s):  
Carolyn L Orthner ◽  
Billy Kolen ◽  
William N Drohan

SummaryActivated protein C (APC) is a serine protease which plays an important role as a naturally occurring antithrombotic enzyme. APC, which is formed by thrombin-catalyzed limited proteolysis of the zymogen protein C, functions as an anticoagulant by proteolytic inactivation of the coagulation cofactors VIIIa and Va. APC is inhibited by several members of the serpin family as well a by α2-macroglobulin. APC is being developed as a therapeutic for the prevention and treatment of thrombosis. We have developed an assay to quantify circulating levels of enzymatically active APC during its administration to patients, in healthy individuals, and in various disease states. This assay utilizes an EDTA-dependent anti-protein C monoclonal antibody (Mab) 7D7B10 to capture both APC and protein C from plasma, prepared from blood collected in an anticoagulant supplemented with the reversible inhibitor p-aminobenzamidine. Mab 7D7B10-derivatized agarose beads are added to the wells of a 96-well filtration plate, equilibrated with Tris-buffered saline, and incubated for 10 min with 200 μl of plasma. After washing, APC and protein C are eluted from the immunosorbent beads with a calcium-containing buffer into the wells of a 96-well microtiter plate containing antithrombin III (ATIII) and heparin. The amidolytic activity of APC is then measured on a kinetic plate reader following the addition of L-pyroglutamyl-L-prolyl-L-arginine-p-nitroanilide (S-2366) substrate.The rate of substrate hydrolysis was proportional to APC concentration over a 200-fold concentration range (5.0 to 1,000 ng/ml) when measured continuously over a 15 to 30 min time period. The coefficient of variation was 5.9% at 35 ng/ml and 8.8% at 350 ng/ml APC. The sensitivity of the assay could be increased by measuring the amount of color produced after longer incubation times in the endpoint mode. The measured APC activity levels were little affected by varying protein C or prothrombin over the extremes of 0 to 150% of normal plasma concentrations. By constructing the standard curve in protein C-deficient plasma, the concentration of APC activity in normal pooled plasma was determined to be 2.8 ng/ml (45 pM), which represents 0.08% of the protein C concentration. The assay was approximately 50-fold more sensitive than the identical assay, but using Mab-coated microtiter wells rather than immunosorbent beads as the capture step.


2013 ◽  
Vol 20 (5) ◽  
pp. 499-509 ◽  
Author(s):  
Pramod Kumar ◽  
Dipak N. Patil ◽  
Anshul Chaudhary ◽  
Shailly Tomar ◽  
Dinesh Yernool ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document