Nucleated red blood cells and hematological scoring system – Future trends in early onset neonatal sepsis

2019 ◽  
Vol 12 (1) ◽  
pp. 53-58
Author(s):  
Shivendra Vikram Singh ◽  
◽  
Megalamane Supreetha ◽  
Satyavathi R Alva ◽  
◽  
...  
2008 ◽  
Vol 198 (4) ◽  
pp. 426.e1-426.e9 ◽  
Author(s):  
Antonette T. Dulay ◽  
Irina A. Buhimschi ◽  
Guomao Zhao ◽  
Guoyang Luo ◽  
Sonya Abdel-Razeq ◽  
...  

1999 ◽  
Vol 45 (4, Part 2 of 2) ◽  
pp. 273A-273A
Author(s):  
Deepa Ranganathan ◽  
Babak Khoshnood ◽  
Subit Boonlayangoor ◽  
William Meadow

1999 ◽  
Vol 64 (2) ◽  
pp. 183-185
Author(s):  
E.C Moser ◽  
G.E.L van den Berk ◽  
H.J Odendaal ◽  
M Smith

Author(s):  
Itamar Nitzan ◽  
Calum T. Roberts ◽  
Risha Bhatia ◽  
Francis B. Mimouni ◽  
Arvind Sehgal

Objective The study aimed to assess the association of nucleated red blood cells (NRBC), a surrogate of intrauterine hypoxia, and elevated pulmonic vascular resistance (E-PVR) and oxygen requirement after minimally invasive surfactant therapy (MIST). Study Design Retrospective study of a cohort of preterm neonates that received MIST in a single unit. Results NRBC were measured in 65 of 75 (87%) neonates administered MIST during the period. In total, 22 of 65 (34%) infants had pre-MIST echocardiography (ECHO).Neonates with elevated NRBC (predefined as >5 × 109/L, n = 16) required higher post-MIST fraction of inspired oxygen (FiO2) than neonates with normal NRBC (<1 × 109/L, n = 17; FiO2 = 0.31 ± 0.10 and 0.24 ± 0.04, respectively, p = 0.02).NRBC correlated positively with % of time in right to left ductal shunt (r = 0.51, p = 0.052) and inversely with right ventricular stroke volume (r = −0.55, p = 0.031) and time to peak velocity to right ventricular ejection time ratio (r = −0.62, p < 0.001). Conclusion Elevated NRBC are associated with elevated FiO2 after MIST and elevated E-PVR. Intrauterine hypoxia may impact postnatal circulatory adaptations and oxygen requirement. Key Points


2021 ◽  
pp. 153537022110132
Author(s):  
Shu-Qin Liu ◽  
Xiao-Ye Hou ◽  
Feng Zhao ◽  
Xiao-Ge Zhao

Heart regeneration is negligible in humans and mammals but remarkable in some ectotherms. Humans and mammals lack nucleated red blood cells (NRBCs), while ectotherms have sufficient NRBCs. This study used Bufo gargarizan gargarizan, a Chinese toad subspecies, as a model animal to verify our hypothesis that NRBCs participate in myocardial regeneration. NRBC infiltration into myocardium was seen in the healthy toad hearts. Heart needle-injury was used as an enlarged model of physiological cardiomyocyte loss. It recovered quickly and scarlessly. NRBC infiltration increased during the recovery. Transwell assay was done to in vitro explore effects of myocardial injury on NRBCs. In the transwell system, NRBCs could infiltrate into cardiac pieces and could transdifferentiate toward cardiomyocytes. Heart apex cautery caused approximately 5% of the ventricle to be injured to varying degrees. In the mildly to moderately injured regions, NRBC infiltration increased and myocardial regeneration started soon after the inflammatory response; the severely damaged region underwent inflammation, scarring, and vascularity before NRBC infiltration and myocardial regeneration, and recovered scarlessly in four months. NRBCs were seen in the newly formed myocardium. Enzyme-linked immunosorbent assay and Western blotting showed that the levels of tumor necrosis factor-α, interleukin- 1β, 6, and11, cardiotrophin-1, vascular endothelial growth factor, erythropoietin, matrix metalloproteinase- 2 and 9 in the serum and/or cardiac tissues fluctuated in different patterns during the cardiac injury-regeneration. Cardiotrophin-1 could induce toad NRBC transdifferentiation toward cardiomyocytes in vitro. Taken together, the results suggest that the NRBC is a cell source for cardiomyocyte renewal/regeneration in the toad; cardiomyocyte loss triggers a series of biological processes, facilitating NRBC infiltration and transition to cardiomyocytes. This finding may guide a new direction for improving human myocardial regeneration.


2021 ◽  
Vol 4 (2) ◽  
pp. 1140-1155
Author(s):  
Xiaoyun Wei ◽  
Keke Chen ◽  
Shishang Guo ◽  
Wei Liu ◽  
Xing-Zhong Zhao

Sign in / Sign up

Export Citation Format

Share Document