Setting and Strength Characteristics of Cement Mortar with Micro Fines

2015 ◽  
Vol 4 (1) ◽  
pp. 27-31
Author(s):  
K.N. Narasimha Prasad ◽  
◽  
Ganesh N ◽  
Rakesh S ◽  
Radhakrishna . ◽  
...  
2021 ◽  
Vol 1043 ◽  
pp. 133-139
Author(s):  
Tolya Khezhev ◽  
Artur Zhurtov ◽  
Alim Kazharov ◽  
Tamerlan Zrumov ◽  
Asharbek Samgurov

The research results on the development of fire-retardant composite cement mortar mixtures on exfoliated vermiculite and volcanic ash with the use of a multifunctional additive are presented D-5. Compositions of fire-retardant composite mortars, which make it possible to significantly improve the physical and mechanical properties of mortar mixtures and mortars, are proposed. Introduction of a multifunctional supplement D-5 in mortar mixtures makes it possible to improve the composite mortar mixtures properties and improve the solution characteristics. Replacement of finely dispersed fraction of exfoliated vermiculite d<0,63 mm volcanic ash by volume in mortar mixtures does not cause a noticeable increase in the solution density, while their strength characteristics increase. The developed composite mortar mixtures meet the requirements of GOST 28013–98 and have a low-cost price due to volcanic ash use.


2013 ◽  
Vol 712-715 ◽  
pp. 905-908
Author(s):  
Qun Pan ◽  
Bin Zhu ◽  
Xiao Huang ◽  
Lin Liu

Properties of alkali-activated slag cements compounded with soluble glasse with a high silicate modulus Ms=2.6 were detailedly studied in this paper, including compressive strength and flexure strength characterictics at the ages of 3,7,28 days and flow values of fresh cement mixtures on a jolting table. As a result, with the compressive strength at the age of 28 days of 95.6-107.8 MPa has been developed, and the flow values and strength characteristics of alkali-activated slag cement mortars increased with increase in a water to cement (alkaline activator solution to slag) ratio, and the flow value (determined on the cement mortar mixtures) would reach 145 mm. Moreover, the development speed of strength characteristics of mortar specimens would be affected negatively by increasing of water demand (requirement).


2021 ◽  
Vol 7 (2) ◽  
pp. 160
Author(s):  
Irka Tangke Datu ◽  
Adiwijaya Ali ◽  
Nur Aisyah Jalali ◽  
Khairil Khairil

This present paper aims to investigate strength characteristics of cement mortar using natural sea sand as fine aggregate in different curing conditions. Research was carried out with making mortar mixtures by two types of cement, Portland Composite Cement (PCC) and Pozzolana Portland Cement (PPC) with tap water as mixing water. Characteristics of fine aggregate and strength of cement mortar use river sand (RS), sea sand (SS), and washed sea sand (WS) were observed. Further, specimens of cube mortar in size of 50 mm x 50 mm x 50 mm of six mortar mixture series were casted according to Indonesian Standard. At 24 hours after cube specimens were casted, cube mortar specimens were cured in three curing conditions such as tap water curing (TC), seawater curing (SC) and air curing (AC). After curing at certain period (3-day, 7-day, 14-day, and 28-day), cube mortar samples were tested in compressive strength. Results concluded that sea sand aggregate improve characteristic of mortar in compressive strength up to 28 days in all curing conditions, and there was no significant effect of type of curing water (TC and SC) on 28-day strength performance of mortar was obtained. In addition, sea sand could potentially be utilized as an aggregate in production of mortar and/or concrete.


2016 ◽  
Vol 28 (6) ◽  
pp. 665-672 ◽  
Author(s):  
Seok-Joon Jang ◽  
Byung-Seon Kim ◽  
Sun-Woong Kim ◽  
Wan-Shin Park ◽  
Hyun-Do Yun

Author(s):  
A. P. Ponomarev ◽  
L. G. Kolyada ◽  
E. V. Tarasyuk

Metal products are subjected to atmospheric corrosion during transportation and storing. An important way to prevent this negative phenomenon is application of special packing materials, in particular materials, containing volatile inhibitors of corrosion, which protect metal against various corrosion agents. To protect metal effectively it is necessary to provide a definite level of operating characteristics of packing materials. The purpose of the work was the study of operating properties of inhibited crepe, inhibited and laminated polyethylene film, inhibited crepe and reinforced by polypropylene web papers, manufactured by OJSC “PP TechnoKhim”, Magnitogorsk, used for packing of metals. Structural and dimensional, sorption, deformation and strength characteristics, of the studied anticorrosion papers are presented, the characteristics being calculated based on the results of measurements. To determine their physical-mechanical and anticorrosion properties, standard methods and methodologies were used. To evaluate impact of moisture and transportation conditions, indices of water adsorption and wear of the studied papers were determined. Inhibitor content in these materials was determined by thermogravimetric analysis method. Their protective ability was studied on samples of low carbon steel strip. For accelerated corrosion tests the strip samples were degreased by alcohol, dried in air and packed in the studied anticorrosion papers, after that they were exposed under increased temperatures and moisture conditions. It was determined, that among the materials under the study, the inhibited crepe paper, reinforced by polypropylene web, hhas the best complex of physical-mechanical and anticorrosion properties. It provides a higher level of prevention corrosion of metal l and surpasses other materials in a number of deformation and strength characteristics. Recommendations were proposed to improve qquality of produced anticorrosion papers.


Sign in / Sign up

Export Citation Format

Share Document