multifunctional additive
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 58)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wentao Zhang ◽  
Zhaogang Liu ◽  
Shuai Li ◽  
Wei Hao ◽  
Yanhong Hu ◽  
...  

In this work, a novel additive lanthanum cerium cysteine (LC-Cys), with the molecular formula La0.35Ce0.65(Cys)3Cl3·3H2O, was successfully synthesized through complex decomposition reaction of L-Cysteine and chlorinated rare earths. The effects of additive LC-Cys on cure characteristics, mechanical properties, and thermooxidative aging were investigated. LC-Cys as a multifunctional additive was applied to increase the curing rate and reduce the content of zinc oxide in the presence of the sulfur vulcanization system. It was found that the vulcanizates filled with (5ZnO/2LC-Cys) exhibited the highest modulus, which indirectly indicated the high crosslink and stiffness of the vulcanizates. Moreover, the vulcanizates with LC-Cys showed excellent mechanical properties and resistance to thermooxidative aging. Compared to NR composites filled with normal ZnO, LC-Cys even enhanced the mechanical strength and thermooxidative aging properties with 40% lower ZnO addition.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6961
Author(s):  
Artur Kościuszko ◽  
Piotr Czyżewski ◽  
Mateusz Rojewski

Polypropylene (PP) belongs to the group of polymers characterized by low susceptibility to absorption of electromagnetic radiation in the infrared range (λ = 1064 nm). This research consisted of assessing the possibility of using silica waste from the metallurgic industry as an additive for PP laser marking. The modifier was introduced into the polymer matrix in the range from 1 to 10 wt%. The effects of laser radiation were assessed based on colorimetric tests and microscopic surface analysis. The mechanical properties of the composites were determined during the static tensile tests. The thermal properties were investigated via differential scanning calorimetry. It was found that the introduction of silica waste into polypropylene allows for the effective marking of sample surfaces with the use of a laser beam. The greatest contrast between the graphic symbol and the background was obtained for silica contents of 3 and 5 wt%, with the use of a low-speed laser head and a strong concentration of the laser beam. The application of silica caused an increase in the modulus of elasticity and the tensile strength of the composite samples. Increases in the crystallization temperature and the degree of crystallinity of the polymer matrix were also observed. It was found that silica waste can act as multifunctional additive for polypropylene.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mianran Chao ◽  
Ming Jin ◽  
Peiwei Gong ◽  
Duyi Shen ◽  
Lili Zhu

Purpose This paper aims to contrastively investigate the antioxidant behavior and tribological performance of a novel multifunctional additive (PBT) and dialkyldithiophosphate (ZDDP) in complex lithium grease (CLG). Design/methodology/approach PBT was successfully synthesized through esterification reaction. The antioxidant behavior of PBT and ZDDP was investigated by thermal analysis, and meanwhile, their tribological performance was evaluated by Optimol SRV-IV oscillating reciprocating friction and wear tester (SRV-IV test) and MRS-1J four-ball tester (Four-ball test). Furthermore, their anticorrosion ability was determined by copper strip corrosion test. Findings Four-ball tests showed that the extreme pressure property of PBT was a little inferior to that of ZDDP. Besides, all the other results demonstrated that PBT showed more superior antioxidation stability, friction-reduction and antiwear ability, as well as anticorrosion performance than ZDDP. Originality/value This work provides a study of hindered phenol derivative as a multifunctional additive in lubricant grease, which can contribute to the development of substitution of ZDDP.


2021 ◽  
Vol 1043 ◽  
pp. 133-139
Author(s):  
Tolya Khezhev ◽  
Artur Zhurtov ◽  
Alim Kazharov ◽  
Tamerlan Zrumov ◽  
Asharbek Samgurov

The research results on the development of fire-retardant composite cement mortar mixtures on exfoliated vermiculite and volcanic ash with the use of a multifunctional additive are presented D-5. Compositions of fire-retardant composite mortars, which make it possible to significantly improve the physical and mechanical properties of mortar mixtures and mortars, are proposed. Introduction of a multifunctional supplement D-5 in mortar mixtures makes it possible to improve the composite mortar mixtures properties and improve the solution characteristics. Replacement of finely dispersed fraction of exfoliated vermiculite d<0,63 mm volcanic ash by volume in mortar mixtures does not cause a noticeable increase in the solution density, while their strength characteristics increase. The developed composite mortar mixtures meet the requirements of GOST 28013–98 and have a low-cost price due to volcanic ash use.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wenjing Zhao ◽  
Jie Xu ◽  
Kun He ◽  
Yuan Cai ◽  
Yu Han ◽  
...  

AbstractPassivating undercoordinated ions is an effective way to reduce the defect densities at the surface and grain boundaries (GBs) of perovskite materials for enhanced photovoltaic performance and stability of perovskite solar cells (PSCs). Here, (BBF) complex is chosen as a multifunctional additive, which contains both C7H9N and BF3 groups working as Lewis base and Lewis acid, respectively, can bond with Pb2+/I− and FA+ on the surface and in the GBs in the perovskite film, affording passivation of both cation and anion defects. The synergistic effect of the C7H9N and BF3 complex slows the crystallization during the perovskite film deposition to improve the crystalline quality, which reduces the trap density and the recombination in the perovskite film to suppress nonradiative recombination loss and minimizes moisture permeation to improve the stability of the perovskite material. Meanwhile, such an additive improves the energy-level alignment between the valence band of the perovskite and the highest occupied molecular orbital of the hole-transporting material, Spiro-OMeTAD. Consequently, our work achieves power conversion efficiency of 23.24%, accompanied by enhanced stability under ambient conditions and light illumination and opens a new avenue for improving the performance of PSCs through the use of a multifunctional complex.


Author(s):  
Xin Gao ◽  
Han-Yi Zhong ◽  
Xian-Bin Zhang ◽  
An-Liang Chen ◽  
Zheng-Song Qiu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 679
Author(s):  
Jiabei Wang ◽  
Wenjing Hu ◽  
Jiusheng Li

With the worldwide concern of environmental protection, water-based lubricants exhibit extensive potential applications due to their advantages of energy-conservation, innocuity, and competitive price. Nonetheless, the common lubricating additives currently available in the market are mainly oil-based, while multifunctional water lubricants are rare. This paper reports a sulfur- and phosphorus-free multifunctional additive with high water-solubility, which is applicable for multitype material surfaces. Specifically, through the Mannich reaction method, a Jeffamine-triazole derivative was synthesized from olyetheramine and benzotriazole. Compared with distilled water, the derivative exhibited superior friction reduction and wear resistance properties in water, with the friction reduction rate up to 72.7% and 70.2% for steel/steel and steel/aluminum contacts, respectively, when the concentration of the JD2000 is 2 wt.%. Remarkably, the wear resistance property for steel/aluminum contact is improved by 88.2%. Moreover, the additive showed corrosion inhibition on the metal surface by 75.5%. We further revealed the lubrication and anti-rust mechanisms: the additives are adsorbed on the surfaces through nitrogen atoms, and the long-chain structure of polyether can cover the sliding surfaces, forming a stable viscoelastic film to prevent the severe damages caused by the direct contact between rough friction pairs. Concurrently, the dense protective film can resist the corrosion of environmental media on the metal surface and delay the metal rust. This research may provide a candidate for an ecofriendly multifunctional water-based lubricating additive.


Sign in / Sign up

Export Citation Format

Share Document