scholarly journals Determination of Optimal Wear Concept of Sheet Metal Forming Tools Using the Autoform Dieadviser Modul

Author(s):  
Noémi László ◽  
Mária Maros
2012 ◽  
Vol 504-506 ◽  
pp. 863-868 ◽  
Author(s):  
Miklos Tisza ◽  
Péter Zoltán Kovács ◽  
Zsolt Lukács

Development of new technologies and processes for small batch and prototype production of sheet metal components has a very important role in the recent years. The reason is the quick and efficient response to the market demands. For this reasons new manufacturing concepts have to be developed in order to enable a fast and reliable production of complex components and parts without investing in special forming machines. The need for flexible forming processes has been accelerated during the last 15 years, and by these developments the technology reaches new extensions. Incremental sheet metal forming (ISMF) may be regarded as one of the promising developments for these purposes. A comprehensive research work is in progress at the University of Miskolc (Hungary) to study the effect of important process parameters with particular emphasis on the shape and dimensional accuracy of the products and particularly on the formability limitations of the process. In this paper, some results concerning the determination of forming limit diagrams for single point incremental sheet metal forming will be described.


2018 ◽  
Vol 19 (6) ◽  
pp. 756-760
Author(s):  
Tomasz Trzepieciński ◽  
Irena Nowotyńska

The friction phenomenon existed in almost all plastic working processes, in particular sheet metal forming, is a complex function of the material's properties, parameters of the forming process, surface topography of the sheet and tools, and lubrication conditions. During the stamping of the drawpieces there are zones differentiated in terms of stress and strain state, displacement speed and friction conditions. This article describes the methods for determining the value of the coefficient of friction in selected areas of sheet metal and presents the drawbacks and limitations of these methods.


2012 ◽  
Vol 504-506 ◽  
pp. 543-548 ◽  
Author(s):  
Francesco Sgarabotto ◽  
Andrea Ghiotti

In the last decades, Physical Vapour Deposition (PVD) and Chemical Vapour Deposition (CVD) processes have been significantly improved and optimized for the applications on dies for sheet metal forming processes. However, due to the different contact conditions at dies-blank interfaces, and the wide range of applied contact pressures, the selection of the correct coating may be still affected by trials-and-error approaches. Although many methods to evaluate the tribological performances of such coatings can be found in scientific literature, they often suffer of limitations in reproducing the interface conditions typical of industrial processes. The objective of the present research work is to investigate the tribological behaviour of two coatings deposited by PVD magnetron sputtering technique. Both investigations in laboratory and industrial conditions were performed: the former to evaluate their tribological characteristics, the latter to test the performances of coatings in production lines. The results, in terms of wear resistance, outline the comparison of the new technology with the performances of traditional dies.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 47 ◽  
Author(s):  
Tomasz Trzepiecinski ◽  
Hirpa G. Lemu

Friction is the main phenomenon that has a huge influence on the flow behavior of deformed material in sheet metal forming operations. Sheet metal forming methods are one of the most popular processes of obtaining finished products, especially in aerospace, automobile, and defense industries. Methods of sheet forming are carried out at different temperatures. So, it requires tribological tests that suitably represent the contact phenomena related to the temperature. The knowledge of the friction properties of the sheet is required for the proper design of the conditions of manufacturing processes and tools. This paper summarizes the methods used to describe friction conditions in conventional sheet metal forming and incremental sheet forming that have been developed over a period of time. The following databases have been searched: WebofKowledge, Scopus, Baztool, Bielefield Academic Search Engine, DOAJ Directory of Open Access Journals, eLibrary.ru, FreeFullPdf, GoogleScholar, INGENTA, Polish Scientific Journals Database, ScienceDirect, Springer, WorldCat, WorldWideScience. The English language is selected as the main source of review. However, in a limited scope, databases in Polish and Russian languages are also used. Many methods of friction testing for tribological studies are selected and presented. Some of the methods are observed to have a huge potential in characterizing frictional resistance. The application of these methods and main results have also been provided. Parameters affecting the frictional phenomena and the role of friction have also been explained. The main disadvantages and limitations of the methods of modeling the friction phenomena in specific areas of material to be formed have been discussed. The main findings are as follows—The tribological tests can be classified into direct and indirect measurement tests of the coefficient of friction (COF). In indirect methods of determination, the COF is determined based on measuring other physical quantities. The disadvantage of this type of methods is that they allow the determination of the average COF values, but they do not allow measuring and determining the real friction resistance. In metal forming operations, there exist high local pressures that intensify the effects of adhesion and plowing in the friction resistance. In such conditions, due to the plastic deformation of the material tested, the usage of the formula for the determination of the COF based on the Coulomb friction model is limited. The applicability of the Coulomb friction model to determine the COF is also very limited in the description of contact phenomena in hot SMF due to the high shear of adhesion in total contact resistance.


2015 ◽  
Vol 132 ◽  
pp. 342-349 ◽  
Author(s):  
M.B. Silva ◽  
A.J. Martínez-Donaire ◽  
G. Centeno ◽  
D. Morales-Palma ◽  
C. Vallellano ◽  
...  

2004 ◽  
Vol 146 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gerhard Gutscher ◽  
Hsien-Chih Wu ◽  
Gracious Ngaile ◽  
Taylan Altan

Sign in / Sign up

Export Citation Format

Share Document