Numerical study of fluid dynamic flow within an internal combustion engine cylinder

Author(s):  
Ana Marta Souza ◽  
Antônio César Valadares de Oliveira ◽  
Enrico Temporim Ribeiro ◽  
Francisco Souza ◽  
Marcelo Colombo Chiari
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2362
Author(s):  
Savvas Savvakis ◽  
Dimitrios Mertzis ◽  
Elias Nassiopoulos ◽  
Zissis Samaras

The current paper investigates two particular features of a novel rotary split engine. This internal combustion engine incorporates a number of positive advantages in comparison to conventional reciprocating piston engines. As a split engine, it is characterized by a significant difference between the expansion and compression ratios, the former being higher. The processes are decoupled and take place simultaneously, in different chambers and on the different sides of the rotating pistons. Initially, a brief description of the engine’s structure and operating principle is provided. Next, the configuration of the compression chamber and the sealing system are examined. The numerical study is conducted using CFD simulation models, with the relevant assumptions and boundary conditions. Two parameters of the compression chamber were studied, the intake port design (initial and optimized) and the sealing system size (short and long). The best option was found to be the combination of the optimized intake port design with the short seal, in order to keep the compression chamber as close as possible to the engine shaft. A more detailed study of the sealing system included different labyrinth geometries. It was found that the stepped labyrinth achieves the highest sealing efficiency.


2018 ◽  
Author(s):  
Deborah Domingos da Rocha ◽  
Fabio de Castro Radicchi ◽  
Paulo César de Ferreira Gomes ◽  
Marcello Brunocilla ◽  
Ramon Molina Valle

Sign in / Sign up

Export Citation Format

Share Document