FLOW VISUALIZATION AND NUMERICAL INVESTIGATION OF GAP VORTEX INSTABILITY IN A RECTANGULAR CHANNEL CONTAINING A SINGLE ROD BUNDLE

Author(s):  
jhon goulart ◽  
Alexandre Vagtinski de Paula ◽  
Herbert Severino
2020 ◽  
Vol 148 ◽  
pp. 107708 ◽  
Author(s):  
Yue Jin ◽  
Fan-Bill Cheung ◽  
Koroush Shirvan ◽  
Stephen M. Bajorek ◽  
Kirk Tien ◽  
...  

Laser Doppler velocimetry (LDV) and video flow visualization are used to investigate the creeping motion of a highly elastic, constant-viscosity fluid flowing past a cylinder mounted centrally in a rectangular channel. A sequence of viscoelastic flow transitions are documented as the volumetric flow rate past the cylinder is increased and elastic effects in the fluid become increasingly important. Velocity profiles clearly show that elasticity has almost no effect on the kinematics upstream of the cylinder, but that the streamlines in the wake of the cylinder are gradually shifted further downstream . Finite element calculations with a nonlinear constitutive model closely reproduce the evolution of the steady two-dimensional velocity field. However, at a well defined set of flow conditions the steady planar stagnation ow in the downstream wake is experimentally observed to become unstable to a steady, three-dimensional cellular structure. The Reynolds number at the onset of the flow instability is less than 0.05 and inertia plays little role in the flow transition, LDV measurements in the wake close to the cylinder reveal large spatially periodic fluctuations of the streamwise velocity that extend along the length of the cylinder and more than five cylinder radii downstream of the cylinder. Fourier analysis shows that the characteristic spatial wavelength of these flow perturbations scales closely with the cylinder radius R . Flow visualization combined with LDV measurements also indicates that the perturbations in the velocity field are confined to the narrow region of strongly extensional flow near the downstream stagnation point. A second flow transition is observed at higher flow rates that leads to steady translation of the cellular structure along the length of the cylinder and time-dependent velocity oscillations in the wake. Measurements of the flow instability are presented for a range of cylinder sizes, and a stability diagram is constructed which shows that the onset point of the wake instability depends on both the extensional deformation of the fluid in the stagnation flow and the shearing flow between the cylinder and the channel.


Author(s):  
Nan Cao ◽  
Xue Li ◽  
Ze-yu Wu ◽  
Xiang Luo

Abstract Discrete hole film cooling has been commonly used as an effective cooling technique to protect gas turbine blades from hot gas. There have been numerous investigations on the cylindrical hole and shaped hole, but few experimental investigations on the cooling mechanism of the novel film holes with side holes (anti-vortex hole and sister hole) are available. This paper presents an experimental and numerical investigation to study the film cooling performance and flow structure of four kinds of film holes (cylindrical hole, fan-shaped hole, anti-vortex hole and sister hole) on the flat plate. The film holes have the same main hole diameter of 4mm and the same inclination angle of 45°. The adiabatic film cooling effectiveness is obtained by the steady-state Thermochromic Liquid Crystal (TLC). The flow visualization experiment and numerical investigation are performed to investigate the flow structure and counter-rotating vortex pair (CRVP) intensity. The smoke is selected as the tracer particle in the flow visualization experiment. The mainstream Reynolds number is 2900, the blowing ratio ranges from 0.3 to 2.0, and the density ratio of coolant to mainstream is 1.065. Experimental results show that compared with the cylindrical hole, the film cooling performance of the anti-vortex hole and sister hole shows significant improvement at all blowing ratios. The sister hole can achieve the best cooling performance at blowing ratios of 0.3 to 1.5. The fan-shaped hole only performs well at high blowing ratios and it performs best at the blowing ratio of 2.0. Flow visualization experiment and numerical investigation reveal that the anti-vortex hole and sister hole can decrease the CRVP intensity of the main hole and suppress the coolant lift-off because of side holes, which increases the film coverage and cooling effectiveness. For the sister hole, the side holes are parallel to the main hole, but for the anti-vortex hole, there are lateral angles between them. The coolant interaction between the side holes and main hole of the sister hole is stronger than that of the anti-vortex hole. Therefore, the sister hole provides better film cooling performance than the anti-vortex hole.


2018 ◽  
Vol 49 (2) ◽  
pp. 103-118
Author(s):  
Ibrahim Tahir ◽  
Waseem Siddique ◽  
Inamul Haq ◽  
Kamran Qureshi ◽  
Anwar Ul Haq Khan

Sign in / Sign up

Export Citation Format

Share Document