INVERSE MODEL BASED ON NEURAL NETWORKS TRAINED WITH EXTREME LEARNING MACHINE AND LEVENBERG-MARQUARDT ALGORITHM

Author(s):  
Ádamo Oliveira ◽  
Gideon Leandro
2021 ◽  
Vol 30 (1) ◽  
pp. 24-35
Author(s):  
Wenhui Cui ◽  
Wei Qu ◽  
Min Jiang ◽  
Gang Yao

Abstract Traditional atmospheric models are based on the analysis and fitting of various factors influencing the space atmosphere density. Neural network models do not specifically analyze the polynomials of each influencing factor in the atmospheric model, but use large data sets for network construction. Two traditional atmospheric model algorithms are analyzed, the main factors affecting the atmospheric model are identified, and an atmospheric model based on neural networks containing various influencing factors is proposed. According to the simulation error, the Levenberg-Marquardt algorithm is used to iteratively realize the rapid network weight correction, and the optimal neural network atmospheric model is obtained. The space atmosphere is simulated and calculated with an atmospheric model based on neural networks, and its average error rate is lower than that of traditional atmospheric models such as the DTM2013 model and the MSIS00 model. At the same time, the calculation complexity of the atmospheric model based on the neural networks is significantly simplified than that of the traditional atmospheric model.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1328
Author(s):  
Jianguo Zhou ◽  
Shiguo Wang

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.


Author(s):  
Shuxiang Xu

An Extreme Learning Machine (ELM) randomly chooses hidden neurons and analytically determines the output weights (Huang, et al., 2005, 2006, 2008). With the ELM algorithm, only the connection weights between hidden layer and output layer are adjusted. The ELM algorithm tends to generalize better at a very fast learning speed: it can learn thousands of times faster than conventionally popular learning algorithms (Huang, et al., 2006). Artificial Neural Networks (ANNs) have been widely used as powerful information processing models and adopted in applications such as bankruptcy prediction, predicting costs, forecasting revenue, forecasting share prices and exchange rates, processing documents, and many more. Higher Order Neural Networks (HONNs) are ANNs in which the net input to a computational neuron is a weighted sum of products of its inputs. Real life data are not usually perfect. They contain wrong, incomplete, or vague data. Hence, it is usual to find missing data in many information sources used. Missing data is a common problem in statistical analysis (Little & Rubin, 1987). This chapter uses the Extreme Learning Machine (ELM) algorithm for HONN models and applies it in several significant business cases, which involve missing datasets. The experimental results demonstrate that HONN models with the ELM algorithm offer significant advantages over standard HONN models, such as faster training, as well as improved generalization abilities.


2019 ◽  
Vol 361 ◽  
pp. 196-211 ◽  
Author(s):  
Carlos Perales-González ◽  
Mariano Carbonero-Ruz ◽  
David Becerra-Alonso ◽  
Javier Pérez-Rodríguez ◽  
Francisco Fernández-Navarro

Sign in / Sign up

Export Citation Format

Share Document