scholarly journals A Mean Model Based Incremental Learning Technique for Extreme Learning Machine

2019 ◽  
Vol 165 ◽  
pp. 541-547
Author(s):  
M Vidhya ◽  
S Aji
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1328
Author(s):  
Jianguo Zhou ◽  
Shiguo Wang

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices is an important means of reducing emissions. This paper innovatively proposes a second decomposition carbon price prediction model based on the nuclear extreme learning machine optimized by the Sparrow search algorithm and considers the structural and nonstructural influencing factors in the model. Firstly, empirical mode decomposition (EMD) is used to decompose the carbon price data and variational mode decomposition (VMD) is used to decompose Intrinsic Mode Function 1 (IMF1), and the decomposition of carbon prices is used as part of the input of the prediction model. Then, a maximum correlation minimum redundancy algorithm (mRMR) is used to preprocess the structural and nonstructural factors as another part of the input of the prediction model. After the Sparrow search algorithm (SSA) optimizes the relevant parameters of Extreme Learning Machine with Kernel (KELM), the model is used for prediction. Finally, in the empirical study, this paper selects two typical carbon trading markets in China for analysis. In the Guangdong and Hubei markets, the EMD-VMD-SSA-KELM model is superior to other models. It shows that this model has good robustness and validity.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 158 ◽  
Author(s):  
Sathya Madhusudhanan ◽  
Suresh Jaganathan ◽  
Jayashree L S

Unstructured data are irregular information with no predefined data model. Streaming data which constantly arrives over time is unstructured, and classifying these data is a tedious task as they lack class labels and get accumulated over time. As the data keeps growing, it becomes difficult to train and create a model from scratch each time. Incremental learning, a self-adaptive algorithm uses the previously learned model information, then learns and accommodates new information from the newly arrived data providing a new model, which avoids the retraining. The incrementally learned knowledge helps to classify the unstructured data. In this paper, we propose a framework CUIL (Classification of Unstructured data using Incremental Learning) which clusters the metadata, assigns a label for each cluster and then creates a model using Extreme Learning Machine (ELM), a feed-forward neural network, incrementally for each batch of data arrived. The proposed framework trains the batches separately, reducing the memory resources, training time significantly and is tested with metadata created for the standard image datasets like MNIST, STL-10, CIFAR-10, Caltech101, and Caltech256. Based on the tabulated results, our proposed work proves to show greater accuracy and efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qiao Shi-fan ◽  
Tan Jun-kun ◽  
Zhang Yong-gang ◽  
Wan Li-jun ◽  
Zhang Ming-fei ◽  
...  

This paper proposes a novel grey wolf optimization-extreme learning machine model, namely, the GWO-ELM model, to train and predict the ground subsidence by combining the extreme learning machine with the grey wolf optimization algorithm. Taking an excavation project of a foundation pit of Kunming in China as an example, after analyzing the settlement monitoring data of cross sections JC55 and JC56, the representative monitoring sites JC55-2 and JC56-1 were selected as the training monitoring samples of the GWO-ELM model. And three kinds of GWO-ELM models such as considering the influence of time series, influence of settlement factors, and after optimization were established to predict the ground settlement near the foundation pit. The predictive results are that their average relative error and average absolute error are ranked from large to small as GWO-ELM model based on time series, GWO-ELM model based on settlement factors, and optimized GWO-ELM model for the three kinds of GWO-ELM models at monitoring points JC55-2 and JC56-1. Accordingly, the optimized GWO-ELM model has the strongest predictive ability.


Sign in / Sign up

Export Citation Format

Share Document