ADAPTED METHOD FOR DETERMINING THE MINIMAL FLUIDIZATION VELOCITY OF A GAS-SOLID FLUIDIZED BED BY USING AN ELECTRICAL CHARGE SENSOR

Author(s):  
Matheus Ferreira Felix de Andrade ◽  
Ruan Pontes ◽  
Emerson dos Reis
2020 ◽  
pp. 127965
Author(s):  
Yanjiao Li ◽  
Chenyang Zhou ◽  
Guannan Lv ◽  
Yongxin Ren ◽  
Yuemin Zhao ◽  
...  

2006 ◽  
Vol 39 (8) ◽  
pp. 798-806
Author(s):  
Di Li ◽  
Kei Mizuta ◽  
Kazuki Ishihata ◽  
Toshihiko Kamiya ◽  
Hidetomo Shirai ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 293 ◽  
Author(s):  
Sung Kim ◽  
Chae Yeo ◽  
Do Lee

Effect of fines content (weight % of particles with diameter less than 45 μm) on bed fluidity was determined to get a base for good fluidization quality in the fluid catalytic cracking (FCC) unit. The fines content in equilibrium FCC catalysts (Ecat) from commercial units were controlled by adding or removing the fines to simulate commercial situation. To get the fluidity values (Umb/Umf) of seven different FCC catalysts (2 Ecats and 5 fresh catalysts) and their mixture, minimum fluidization velocity (Umf) and minimum bubbling velocity (Umb) were measured in a fluidized bed reactor (0.05 m ID). The fluidity decreased with loss of fines content and increased with increments of makeup of fresh catalysts or additive with the controlled fines content. The fluidities of catalysts increase with increases of normalized particle diameter variation by the fines addition. The obtained fluidities have been correlated with the fines contents and the catalyst and gas properties. The proposed correlation could guide to keep good catalyst fluidity in the FCC unit.


Author(s):  
David R. Escudero ◽  
Theodore J. Heindel

Characterizing the hydrodynamics of a fluidized bed is of vital importance to understand the behavior of these multiphase flow systems. Minimum fluidization velocity and gas holdup are two important factors used to understand the hydrodynamics of a fluidized bed. Experimental studies on the effects of bed height on the minimum fluidization velocity and gas holdup were carried out using a 10.2 cm diameter cylindrical fluidized bed filled with 500–600 μm glass beads. In this study, four different bed height-to-diameter ratios were used: H/D = 0.5, 1, 1.5, and 2. Minimum fluidization velocity was determined for each H/D ratio using pressure drop measurements. Local time-average gas holdup was determined using non-invasive X-ray computed tomography imaging. Results show that minimum fluidization velocity is not affected by the change in bed height, while local gas holdup does appear to be affected by the change in bed height.


Sign in / Sign up

Export Citation Format

Share Document