scholarly journals Initiation of a Proto-transform Fault Prior to Seafloor Spreading

2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
JM Bull ◽  
D Keir ◽  
T Gerya ◽  
C Pagli ◽  
...  

©2018. The Authors. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges in ocean basins worldwide. The current consensus is that oceanic transform faults initiate after the onset of seafloor spreading. However, this inference has been difficult to test given the lack of direct observations of transform fault formation. Here we integrate evidence from surface faults, geodetic measurements, local seismicity, and numerical modeling of the subaerial Afar continental rift and show that a proto-transform fault is initiating during the final stages of continental breakup. This is the first direct observation of proto-transform fault initiation in a continental rift and sheds unprecedented light on their formation mechanisms. We demonstrate that they can initiate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Future studies of volcanic rifted margins cannot assume that oceanic transform faults initiated after the onset of seafloor spreading.

2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
JM Bull ◽  
D Keir ◽  
T Gerya ◽  
C Pagli ◽  
...  

©2018. The Authors. Transform faults are a fundamental tenet of plate tectonics, connecting offset extensional segments of mid-ocean ridges in ocean basins worldwide. The current consensus is that oceanic transform faults initiate after the onset of seafloor spreading. However, this inference has been difficult to test given the lack of direct observations of transform fault formation. Here we integrate evidence from surface faults, geodetic measurements, local seismicity, and numerical modeling of the subaerial Afar continental rift and show that a proto-transform fault is initiating during the final stages of continental breakup. This is the first direct observation of proto-transform fault initiation in a continental rift and sheds unprecedented light on their formation mechanisms. We demonstrate that they can initiate during late-stage continental rifting, earlier in the rifting cycle than previously thought. Future studies of volcanic rifted margins cannot assume that oceanic transform faults initiated after the onset of seafloor spreading.


2021 ◽  
Vol 7 (15) ◽  
pp. eabf3388
Author(s):  
Zhiteng Yu ◽  
Satish C. Singh ◽  
Emma P. M. Gregory ◽  
Marcia Maia ◽  
Zhikai Wang ◽  
...  

Oceanic transform faults, a key element of plate tectonics, represent the first-order discontinuities along mid-ocean ridges, host large earthquakes, and induce extreme thermal gradients in lithosphere. However, the thermal structure along transform faults and its effects on earthquake generation are poorly understood. Here we report the presence of a 10- to 15-kilometer-thick in-depth band of microseismicity in 10 to 34 kilometer depth range associated with a high-temperature (700° to 900°C) mantle below the brittle lithosphere along the Romanche mega transform fault in the equatorial Atlantic Ocean. The occurrence of the shallow 2016 moment magnitude 7.1 supershear rupture earthquake and these deep microearthquakes indicate that although large earthquakes occur in the upper brittle lithosphere, a substantial amount of deformation is accommodated in the semibrittle mylonitic mantle that resides at depths below the 600°C isotherm. We also observe a rapid westward deepening of this band of seismicity indicating a strong lateral heterogeneity.


2020 ◽  
Author(s):  
Carolina Pagli ◽  
Alessandro La Rosa ◽  
Finnigan Illsley-Kemp

<p>Mid-ocean ridges are segmented and offset along their length. However, the kinematics of rift linkage and the initiation of oceanic transform faults in magmatic rifts remain debated. Crustal deformation patterns from the Afar continental rift provide evidences of how rifts grow to link in an area of incipient seafloor spreading. Here we present examples of rift linkage processes in Afar integrating seismicity and geodetic (InSAR and GPS) measurements, and explained by numerical and analytical models. We show that in central Afar overlapping spreading rifts link through zones of rift-perpendicular strike-slip faulting at the tips of the spreading rifts, demonstrating that distributed extension drives rift-perpendicular shearing. Conversely, in northern Afar we identify a linkage zone between the Erta Ale and Tat Ali segments where shear is accommodated by a conjugate set of oblique slip faults. There, InSAR modelling of a M<sub>L</sub> 5.1 earthquake in 2007 show that overall right-lateral shear is accommodated primarily by oblique left-lateral slip along faults subparallel to the rift segments but an active conjugate fault system with right-lateral slip is also highlighted by low-to-moderate seismicity during 2011-2013. Thermomechanical models of transform fault formation are consistent with the presence of a proto-transform fault that may develop into a throughgoing transform in the future. Our results provide evidences that offset rift segments during continental breakup can be linked by a wide variety of strain types and proto-transform zones can form before the onset of seafloor spreading.</p>


Author(s):  
Roy Livermore

According to first-generation plate tectonics, sea-floor spreading was nice and simple. Plates were pulled apart at mid-ocean ridges, and weak mantle rocks rose to fill the gap and began to melt. The resulting basaltic magma ascended into the crust, where it ponded to form linear ‘infinite onion’ magma chambers beneath the mid-ocean tennis-ball seam. At frequent intervals, vertical sheets of magma rose from these chambers to the surface, where they erupted to form new ocean floor or solidified to form dykes, in the process acquiring a magnetization corresponding to the geomagnetic field at the time. Mid-ocean ridge axes were defined by rifted valleys and divided into segments by transform faults with offsets of tens to hundreds of kilometres, resulting in the staircase pattern seen on maps of the ocean floor. All mid-ocean ridges were thus essentially identical. Such a neat and elegant theory was bound to be undermined as new data were acquired in the oceans.


2021 ◽  
Vol 40 (2) ◽  
pp. 538-565
Author(s):  
BENTO CAVADAS

Plate tectonics caused a revolution within earth sciences which then was transposed into science textbooks. The main objective of this paper is to explore how plate tectonics influenced Portuguese and Spanish science textbooks published from the 1960s through the 1980s. For this purpose, a qualitative method based on the concept of didactic transposition is used. The didactic transposition of seafloor spreading evidence such as ridges, rifts and trenches, transform faults, seafloor sediments, the age of seafloor basaltic rocks, the magnetic anomalies on the seafloor, the Benioff zones and the subduction process, and also the didactic transposition of the formation of mountains ranges and island arcs, convection currents, plate tectonics concepts, boundaries and motion, and plate tectonics acceptance are studied in a comprehensive sample of science textbooks. The analysis of textbooks shows that the didactic transposition of seafloor spreading, and plate tectonics started mainly in 1970s Portuguese and Spanish textbooks and had a strong development in 1980s textbooks. No major differences were found between the approaches to plate tectonics in similar age Portuguese and Spanish textbooks. At the beginning of the 1970s, textbooks presented partial evidence for seafloor spreading, such as magnetic anomalies and the characteristics of ridges, rifts and trenches. They also addressed convection currents but only those that were related to geosynclines. In the mid 1970s and in the 1980s, textbooks presented more comprehensive evidence of seafloor spreading, by adding didactical transpositions of transform faults, seafloor sediments and the age of seafloor rocks. They also presented in more detail topics such as magnetic anomalies, the Benioff zones, orogenic processes and the tectonic significance of ridges, rifts and trenches. Plate tectonic theory was presented in major textbooks as widely accepted, and discussions about speculative facts or processes were rare.


Author(s):  
Roy Livermore

Tuzo Wilson introduces the concept of transform faults, which has the effect of transforming Earth Science forever. Resistance to the new ideas is finally overcome in the late 1960s, as the theory of moving plates is established. Two scientists play a major role in quantifying the embryonic theory that is eventually dubbed ‘plate tectonics’. Dan McKenzie applies Euler’s theorem, used previously by Teddy Bullard to reconstruct the continents around the Atlantic, to the problem of plate rotations on a sphere and uses it to unravel the entire history of the Indian Ocean. Jason Morgan also wraps plate tectonics around a sphere. Tuzo Wilson introduces the idea of a fixed hotspot beneath Hawaii, an idea taken up by Jason Morgan to create an absolute reference frame for plate motions.


Author(s):  
Peter Molnar

‘Fracture zones and transform faults’ introduces fracture zones, huge, long linear scars in the seafloor first mapped in the 1950s, and their interpretation in terms of a new concept, transform faulting. Fracture zones are made at mid-ocean ridges, where the seafloor spreads apart. Segments of zones of spreading intersect fracture zones at right angles, along which transform faulting transfers the spreading on one spreading zone to another. As the seafloor spreads, and plates move apart at mid-ocean ridges, fracture zones grow longer. Testing this idea relied on the study of earthquakes that occurred on the transform faults, using seismographs on distant continents. This chapter introduces readers to the pertinent seismological methods by which this was achieved.


Author(s):  
Jan Zalasiewicz

‘First rocks on a dead Earth’ describes the formation of the planet Earth from the collision of the precursor planets Tellus and Theia. The surface of the newly born Earth had a surface magma ocean. As this magma cooled, the first minerals formed. The earliest rocks on Earth date back to the Archaeon Eon. During that time, plate tectonics started up, which determined the nature of all subsequent rocks on Earth. The processes of fractional melting and impact of cooling rate on crystal sizes is explained along with the different types of igneous rocks—basalts, andesites, diorites, rhyolites, and granites—formed at mid-ocean ridges, subduction zones, and plate collision zones.


Sign in / Sign up

Export Citation Format

Share Document