scholarly journals Ecological, Oceanographic and Temperature Controls on the Incorporation of Trace Elements into Globigerina Bulloides and Globoconella Inflata in the Southwest Pacific Ocean

2021 ◽  
Author(s):  
◽  
Julene Marr

<p>Trace element ratios (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca) measured by laser ablation inductively coupled plasma mass spectrometry plus and test weight and size data are presented for two planktonic foraminiferal species, Globigerina bulloides and Globoconella inflata. These data will be used to investigate the potential of Mg/Ca ocean thermometry and other trace element proxies of past ocean chemistry using these species. Foraminifera were sampled from core-top sediments from 10 sites in the Southwest Pacific Ocean, east of New Zealand, spanning latitudes of c.33' to 54' S and temperatures of 6-19' C at 75-300 m water depth. Mg/Ca in G. bulloides correlates strongly with observed water temperatures at 200 m depth and yields a new calibration of Mg/Ca = 0.941 exp 0.0693*T (r2 = 0.95). When G. bulloides Mg/Ca data from this study are combined with previously published data for this species, a calibration of Mg/Ca = 0.998 exp 0.066*T (r2 = 0.97) is defined. Significant variability of Mg/Ca values (20-30%) was found for the four largest chambers of G. bulloides with the final chamber consistently recording the lowest Mg/Ca values. This is interpreted to reflect changes in the depth habitat towards the end of the life cycle of G. bulloides. Levels of A1 and the micronutrients Mn and Zn in G. bulloides were found to differ significantly between Subtropical and Subantarctic Water masses, suggesting these elements can potentially be used as water mass tracers. No clear relationship between Mg/Ca and temperature was observed for G.inflata. This is interpreted, in part, to reflect the ecological niche that G. inflata occupies at the base of the thermocline, coupled with the impact of heavy secondary calcite which lowers Mg/Ca values. A correlation between size normalized test weight, water temperature and seawater carbonate ion concentration is observed for G. bulloides suggesting a modern calibration that could be potentially applied for paleoceanographic reconstructions of ocean water temperature and carbonate ion concentrations. No correlation between temperature or carbonate ion was found with size normalized G. inflata test weights. However, a bimodal population of G. inflata test weights indicates a possible link between high levels of chlorophyll-a in surface waters and light G. inflata tests. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution-based techniques for measuring Mg/Ca in G. bulloides yield compatible results. However, this is possible only when minimal dissolution of test calcite has occurred during the reductive and dilute acid leaching stages of cleaning prior to solution analysis, or, if only the older three visible chambers are used for LA-ICP-MS analysis. LA-ICP-MS analysis is an effective method for measuring trace element/Ca values in foraminifera, especially for small sample sizes, and enables the test to be used for further geochemical analysis (e.g. boron or carbon/oxygen stable isotope analysis).</p>

2021 ◽  
Author(s):  
◽  
Julene Marr

<p>Trace element ratios (Mg/Ca, Al/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca) measured by laser ablation inductively coupled plasma mass spectrometry plus and test weight and size data are presented for two planktonic foraminiferal species, Globigerina bulloides and Globoconella inflata. These data will be used to investigate the potential of Mg/Ca ocean thermometry and other trace element proxies of past ocean chemistry using these species. Foraminifera were sampled from core-top sediments from 10 sites in the Southwest Pacific Ocean, east of New Zealand, spanning latitudes of c.33' to 54' S and temperatures of 6-19' C at 75-300 m water depth. Mg/Ca in G. bulloides correlates strongly with observed water temperatures at 200 m depth and yields a new calibration of Mg/Ca = 0.941 exp 0.0693*T (r2 = 0.95). When G. bulloides Mg/Ca data from this study are combined with previously published data for this species, a calibration of Mg/Ca = 0.998 exp 0.066*T (r2 = 0.97) is defined. Significant variability of Mg/Ca values (20-30%) was found for the four largest chambers of G. bulloides with the final chamber consistently recording the lowest Mg/Ca values. This is interpreted to reflect changes in the depth habitat towards the end of the life cycle of G. bulloides. Levels of A1 and the micronutrients Mn and Zn in G. bulloides were found to differ significantly between Subtropical and Subantarctic Water masses, suggesting these elements can potentially be used as water mass tracers. No clear relationship between Mg/Ca and temperature was observed for G.inflata. This is interpreted, in part, to reflect the ecological niche that G. inflata occupies at the base of the thermocline, coupled with the impact of heavy secondary calcite which lowers Mg/Ca values. A correlation between size normalized test weight, water temperature and seawater carbonate ion concentration is observed for G. bulloides suggesting a modern calibration that could be potentially applied for paleoceanographic reconstructions of ocean water temperature and carbonate ion concentrations. No correlation between temperature or carbonate ion was found with size normalized G. inflata test weights. However, a bimodal population of G. inflata test weights indicates a possible link between high levels of chlorophyll-a in surface waters and light G. inflata tests. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution-based techniques for measuring Mg/Ca in G. bulloides yield compatible results. However, this is possible only when minimal dissolution of test calcite has occurred during the reductive and dilute acid leaching stages of cleaning prior to solution analysis, or, if only the older three visible chambers are used for LA-ICP-MS analysis. LA-ICP-MS analysis is an effective method for measuring trace element/Ca values in foraminifera, especially for small sample sizes, and enables the test to be used for further geochemical analysis (e.g. boron or carbon/oxygen stable isotope analysis).</p>


2011 ◽  
Vol 17 (S2) ◽  
pp. 566-567 ◽  
Author(s):  
A Netting ◽  
J Payne ◽  
B Wade ◽  
T Raimondo

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2017 ◽  
Vol 32 (10) ◽  
pp. 2003-2010 ◽  
Author(s):  
Keita Itano ◽  
Tsuyoshi Iizuka

Oxide interference can be problematic for trace element and isotopic analyses using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).


2006 ◽  
Vol 10 ◽  
pp. 25-28 ◽  
Author(s):  
Dirk Frei ◽  
Julie A. Hollis ◽  
Axel Gerdes ◽  
Dan Harlov ◽  
Christine Karlsson ◽  
...  

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed in 1985 and the first commercial laser ablation systems were introduced in the mid 1990s. Since then, LA-ICP-MS has become an important analytical tool in the earth sciences. Initially, the main interest for geologists was in its ability to quantitatively determine the contents of a wide range of elements in many minerals at very low concentrations (a few ppm and below) with relatively high spatial resolution (spot diameters of typically 30–100 μm). The potential of LA-ICP-MS for rapid in situ U–Th–Pb geochronology was already realised in the early to mid 1990s. However, the full potential of LA-ICP-MS as the low-cost alternative to ion-microprobe techniques for highly precise and accurate in situ U–Th–Pb age dating was not realised until the relatively recent advances in laser technologies and the introduction of magnetic sectorfield ICP-MS (SF-ICPMS) instruments. In March 2005, the Geological Survey of Denmark and Greenland (GEUS) commissioned a new laser ablation magnetic sectorfield inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) facility employing a ThermoFinnigan Element2 high resolution magnetic sectorfield ICP-MS and a Merchantek New Wave 213 nm UV laser ablation system. The new GEUS LA-SF-ICP-MS facility is widely used on Survey research projects in Denmark and Greenland, as well as in collaborative research and contract projects conducted with partners from academia and industry worldwide. Here, we present examples from some of the these ongoing studies that highlight the application of the new facility for advanced geochronological and trace element in situ microanalysis of geomaterials. The application of LASF-ICP-MS based in situ zircon geochronology to regional studies addressing the Archaean geology of southern West Greenland is presented by Hollis et al. (2006, this volume).


Sign in / Sign up

Export Citation Format

Share Document