scholarly journals The Role of Steroids, Growth Factors and CAMP Stimulators on the Gap Junction Activity in Cumulus Oocyte Complexes in the Rat

2021 ◽  
Author(s):  
◽  
Manvi Yadav

<p>Bidirectional communication between mammalian oocytes and their surrounding somatic cells is essential for oocyte maturation. Gap junctions promote the transfer of essential metabolites, nucleotides, amino acids and ions from cumulus cells to the oocyte that are crucial for oocyte growth and development. However, the range of factors present in the microenvironment of the developing antral follicle, which modulate gap junction activity of the cumulus-oocyte complexes (COCs), is largely unknown. The primary objective of this study was to determine the effects of various steroids, growth factors and cAMP stimulators on the gap junction activity in rat COCs. The gap junction activity was measured in presence or absence of different treatments using a fluorescence dye and in the presence of milrinone, a phosphodiesterase type 3 inhibitor. The major findings of this study were that cAMP stimulators increased the rate of dye transfer from cumulus cells to the oocyte. Under in vitro conditions it was established that neither steroids nor IGF1 by themselves were able to modulate gap junction activity in rat COCs. Furthermore, forskolin, a potent cAMP stimulator; caused a relative increase in Cx37 gene expression levels following a four hours incubation period. The outcomes from the present study may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes.</p>

2021 ◽  
Author(s):  
◽  
Manvi Yadav

<p>Bidirectional communication between mammalian oocytes and their surrounding somatic cells is essential for oocyte maturation. Gap junctions promote the transfer of essential metabolites, nucleotides, amino acids and ions from cumulus cells to the oocyte that are crucial for oocyte growth and development. However, the range of factors present in the microenvironment of the developing antral follicle, which modulate gap junction activity of the cumulus-oocyte complexes (COCs), is largely unknown. The primary objective of this study was to determine the effects of various steroids, growth factors and cAMP stimulators on the gap junction activity in rat COCs. The gap junction activity was measured in presence or absence of different treatments using a fluorescence dye and in the presence of milrinone, a phosphodiesterase type 3 inhibitor. The major findings of this study were that cAMP stimulators increased the rate of dye transfer from cumulus cells to the oocyte. Under in vitro conditions it was established that neither steroids nor IGF1 by themselves were able to modulate gap junction activity in rat COCs. Furthermore, forskolin, a potent cAMP stimulator; caused a relative increase in Cx37 gene expression levels following a four hours incubation period. The outcomes from the present study may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes.</p>


2021 ◽  
Author(s):  
◽  
Shruti Patel

<p>The capacity of an oocyte to mature during ovarian follicular development is a key process in reproductive biology. Bidirectional communication between mammalian oocytes and their associated follicular somatic cells (cumulus-cells) is essential for oocyte maturation. Historically, studies examining the control of ovarian follicular development focused mainly on the endocrine (external) signalling but recently intraovarian (paracrine) regulation has also been shown to be important. In addition, signalling via gap junctions between follicular cells had also been crucial for oocyte maturation and follicular development. In antral follicles, gap junction activity between the oocyte and adjacent cumulus cells first increase during follicular growth and shortly before ovulation they decrease as the oocyte resumes meiosis once more before ovulation. The range of factors that modulate gap junction activity of oocyte-cumulus cell complexes (COC) is largely unknown. The aims of these studies were to develop an assay to assess the rate of transfer of low molecular weight materials from cumulus cells to the oocyte via gap junctions. The first objective was to validate a bioassay by which to test the effects of hormones, second messengers, and growth factors on gap junction activity in rat cumulus-oocyte complexes. In this study, COCs were collected from antral follicles of untreated post-pubertal Sprague Dawley rats. Gap junction activity was measured in the presence or absence of different treatments using the fluorescence dye, Calcein-AM and in the presence of a phosphodiesterase type 3 inhibitor (PDE3) milrinone. Transfer of the calcein dye from cumulus cells into the oocyte was measured at various times using CRAIC fluorescence system. The results showed that removal of the COCs from their follicular environments disrupted the gap junction activity which recovered over time in culture media. COC were sensitive to changes in pH concentration and gap junction activity could be blocked with 8 ocatnol-1 but not carbenoxolone. Treating rat COCs with dibutyryl cAMP or agents that maintained or increased intracellular cAMP levels like milrinone or forskolin were unable to modulate gap junction activity. Further, the combined effect of the oocyte-derived growth factors: growth differentiating factor 9 (GDF9) with bone morphogenetic protein 15 (BMP15) was also unable to modulate the rate of calcein dye transfer from cumulus cells to the oocyte. Ovarian steroids such as oestradiol and testosterone by themselves were unable to modulate the gap junction activity of rat COC but the combined treatment of testosterone plus forskolin or testosterone plus forskolin plus insulin-like growth factor 1 (IGF-1) increased the rate of dye transfer from cumulus cells to the oocyte. In conclusion, a fluorescence dye transfer assay was developed to measure the effects of different treatments on gap junction activity in rat COC. Under in vitro conditions, it was established that the combination of steroid and cAMP stimulators or a steroid, cAMP stimulator with IGF1 but not these reagents individually could enhance the recovery of gap junction function in rat COC. The outcomes of these experiments may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes. Also, the newly developed assay may serve as a useful in vitro model to evaluate the effects of hormones, nutritional supplements and other factors on COC functions.</p>


2021 ◽  
Author(s):  
◽  
Shruti Patel

<p>The capacity of an oocyte to mature during ovarian follicular development is a key process in reproductive biology. Bidirectional communication between mammalian oocytes and their associated follicular somatic cells (cumulus-cells) is essential for oocyte maturation. Historically, studies examining the control of ovarian follicular development focused mainly on the endocrine (external) signalling but recently intraovarian (paracrine) regulation has also been shown to be important. In addition, signalling via gap junctions between follicular cells had also been crucial for oocyte maturation and follicular development. In antral follicles, gap junction activity between the oocyte and adjacent cumulus cells first increase during follicular growth and shortly before ovulation they decrease as the oocyte resumes meiosis once more before ovulation. The range of factors that modulate gap junction activity of oocyte-cumulus cell complexes (COC) is largely unknown. The aims of these studies were to develop an assay to assess the rate of transfer of low molecular weight materials from cumulus cells to the oocyte via gap junctions. The first objective was to validate a bioassay by which to test the effects of hormones, second messengers, and growth factors on gap junction activity in rat cumulus-oocyte complexes. In this study, COCs were collected from antral follicles of untreated post-pubertal Sprague Dawley rats. Gap junction activity was measured in the presence or absence of different treatments using the fluorescence dye, Calcein-AM and in the presence of a phosphodiesterase type 3 inhibitor (PDE3) milrinone. Transfer of the calcein dye from cumulus cells into the oocyte was measured at various times using CRAIC fluorescence system. The results showed that removal of the COCs from their follicular environments disrupted the gap junction activity which recovered over time in culture media. COC were sensitive to changes in pH concentration and gap junction activity could be blocked with 8 ocatnol-1 but not carbenoxolone. Treating rat COCs with dibutyryl cAMP or agents that maintained or increased intracellular cAMP levels like milrinone or forskolin were unable to modulate gap junction activity. Further, the combined effect of the oocyte-derived growth factors: growth differentiating factor 9 (GDF9) with bone morphogenetic protein 15 (BMP15) was also unable to modulate the rate of calcein dye transfer from cumulus cells to the oocyte. Ovarian steroids such as oestradiol and testosterone by themselves were unable to modulate the gap junction activity of rat COC but the combined treatment of testosterone plus forskolin or testosterone plus forskolin plus insulin-like growth factor 1 (IGF-1) increased the rate of dye transfer from cumulus cells to the oocyte. In conclusion, a fluorescence dye transfer assay was developed to measure the effects of different treatments on gap junction activity in rat COC. Under in vitro conditions, it was established that the combination of steroid and cAMP stimulators or a steroid, cAMP stimulator with IGF1 but not these reagents individually could enhance the recovery of gap junction function in rat COC. The outcomes of these experiments may help to provide new insights into developing suitable in vitro conditions, for the in vitro maturation of mammalian oocytes. Also, the newly developed assay may serve as a useful in vitro model to evaluate the effects of hormones, nutritional supplements and other factors on COC functions.</p>


Author(s):  
Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.


Reproduction ◽  
2010 ◽  
Vol 139 (3) ◽  
pp. 587-598 ◽  
Author(s):  
Samu Myllymaa ◽  
Arja Pasternack ◽  
David G Mottershead ◽  
Matti Poutanen ◽  
Minna M Pulkki ◽  
...  

Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are among the key regulators transmitting the signaling between the oocyte and the surrounding granulosa cells. Previously, it has been shown that a recombinant BMP type II receptor ectodomain–Fc fusion protein (BMPR2ecd–Fc) is able to inhibit the actions of GDF9 and BMP15 in vitro. Here, we have produced bioactive BMPR2ecd–Fc, which was injected i.p. into neonatal mice. Early folliculogenesis was first studied by injecting mice five times with various doses of BMPR2ecd–Fc during the postnatal days 4–12. Folliculogenesis was affected dose dependently, as evidenced by a decreased mitogenesis of granulosa cells of the growing follicles. Furthermore, we also noticed a decrease in the number of secondary and tertiary follicles as well as an increase in the oocyte size. Electron microscopic analysis revealed that the ultrastructure of the granulosa cells of the primary follicles was not affected by the BMPR2ecd–Fc treatment. A second study was conducted to investigate whether a longer treatment with 12 injections during postnatal days 4–28 would inhibit folliculogenesis. Similar effects were observed in the two studies on the early follicular developmental stages. However, in the long-term study, later stages of folliculogenesis were not blocked but rather increased numbers of antral follicles, preovulatory follicles, and corpora lutea were found. We conclude that BMPR2ecd–Fc is a potent modulator of ovarian folliculogenesis in vivo, and thus, is a valuable tool for studying the physiology and downstream effects of oocyte-derived growth factors in vivo.


Reproduction ◽  
2004 ◽  
Vol 128 (4) ◽  
pp. 379-386 ◽  
Author(s):  
K P McNatty ◽  
L G Moore ◽  
N L Hudson ◽  
L D Quirke ◽  
S B Lawrence ◽  
...  

Ovulation rate in mammals is determined by a complex exchange of hormonal signals between the pituitary gland and the ovary and by a localised exchange of hormones within ovarian follicles between the oocyte and its adjacent somatic cells. From examination of inherited patterns of ovulation rate in sheep, point mutations have been identified in two oocyte-expressed genes, BMP15 (GDF9B) and GDF9. Animals heterozygous for any of these mutations have higher ovulation rates (that is, + 0.8–3) than wild-type contemporaries, whereas those homozygous for each of these mutations are sterile with ovarian follicular development disrupted during the preantral growth stages. Both GDF9 and BMP15 proteins are present in follicular fluid, indicating that they are secreted products. In vitro studies show that granulosa and/or cumulus cells are an important target for both growth factors. Multiple immunisations of sheep with BMP15 or GDF9 peptide protein conjugates show that both growth factors are essential for normal follicular growth and the maturation of preovulatory follicles. Short-term (that is, primary and booster) immunisation with a GDF9 or BMP15 peptide-protein conjugate has been shown to enhance ovulation rate and lamb production. In summary, recent studies of genetic mutations in sheep highlight the importance of oocyte-secreted factors in regulating ovulation rate, and these discoveries may help to explain why some mammals have a predisposition to produce two or more offspring rather than one.


2010 ◽  
Vol 24 (6) ◽  
pp. 1230-1239 ◽  
Author(s):  
You-Qiang Su ◽  
Koji Sugiura ◽  
Qinglei Li ◽  
Karen Wigglesworth ◽  
Martin M. Matzuk ◽  
...  

Abstract LH triggers the maturation of the cumulus-oocyte complex (COC), which is followed by ovulation. These ovarian follicular responses to LH are mediated by epidermal growth factor (EGF)-like growth factors produced by granulosa cells and require the participation of oocyte-derived paracrine factors. However, it is not clear how oocytes coordinate with the EGF receptor (EGFR) signaling to achieve COC maturation. The aim of the present study was to test the hypothesis that oocytes promote the expression of EGFR by cumulus cells, thus enabling them to respond to the LH-induced EGF-like peptides. Egfr mRNA and protein expression were dramatically reduced in cumulus cells of mutant mice deficient in the production of the oocyte-derived paracrine factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15). Moreover, microsurgical removal of oocytes from wild-type COCs dramatically reduced expression of Egfr mRNA and protein, and these levels were restored by either coculture with oocytes or treatment with recombinant GDF9 or GDF9 plus recombinant BMP15. Blocking Sma- and Mad-related protein (SMAD)2/3 phosphorylation in vitro inhibited Egfr expression in wild-type COCs and in GDF9-treated wild-type cumulus cells, and conditional deletion of Smad2 and Smad3 genes in granulosa cells in vivo resulted in the reduction of Egfr mRNA in cumulus cells. These results indicate that oocytes promote expression of Egfr in cumulus cells, and a SMAD2/3-dependent pathway is involved in this process. At least two oocyte-derived growth factors, GDF9 and BMP15, are required for EGFR expression by cumulus cells.


2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 694-694
Author(s):  
Nicolas William Santiquet ◽  
Claude Robert ◽  
Francois Richard

2011 ◽  
Vol 23 (1) ◽  
pp. 224 ◽  
Author(s):  
E. C. Curnow ◽  
J. P. Ryan ◽  
D. M. Saunders ◽  
E. S. Hayes

During oocyte growth chromatin configuration of the germinal vesicle (GV) oocyte undergoes modification in relation to changes in transcriptional activity crucial for conferring meiotic as well as developmental competence on the oocyte. In the macaque oocyte, there are 3 distinct GV states: GV1, noncondensed chromatin; GV2, an intermediate state; and GV3, condensed chromatin. The aim of this study was to test the effects of a prematuration culture (PMC) system, using the phosphodiesterase type 3 inhibitor milrinone (MIL), on the synchronization of GV chromatin to the GV3 stage and assess metaphase II (MII) oocyte reduced glutathione (GSH) content as a measure of cytoplasmic maturation. Reagents were purchased from Sigma (St. Louis, MO, USA) unless stated otherwise. To assess the effect of PMC on GV chromatin status, immature oocytes retrieved from unstimulated ovaries were either fixed (2% paraformaldehyde+0.1% Triton-X100) immediately after follicular aspiration (t = 0) or after culture in a humidified atmosphere of 6% CO2 in air at 37°C for 24 h in modified Connaught Medical Research Laboratories medium (mCMRL) supplemented with 10% FCS (Hyclone, Logan, UT, USA) and 12.5 μM MIL in the absence (MILNil) or presence of 1.0 IU of FSH (MILFSH). For chromatin assessment, fixed GV oocytes were stained with 5 μg mL–1 of 4′,6-diamidino-2-phenylindole (Molecular Probes, Leiden, the Netherlands) and imaged using confocal microscopy. Following PMC, MILFSH oocytes were transferred to fresh mCMRL+FCS supplemented with 1.0 IU of recombinant human FSH and 1.0 IU of hLH and cultured for a further 30 h. Control and MILFSH oocytes were denuded of cumulus cells and assessed for maturation. The MII oocytes were prepared for GSH analysis, and total GSH content was determined using a commercial 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB)-GSH reductase recycling assay kit (North-West Life Science). The MII rates were compared using chi-square. Differences in oocyte GSH content were compared using t-test. Significant differences were determined at P < 0.05. There was no significant difference in the proportion of oocytes remaining at the GV stage following 24 h of PMC in MILNil or MILFSH (42/44, 96% v. 32/35, 91%, respectively). However, there was a significant reduction in GV1 chromatin (15/49, 31% v. 28/54, 52% and 22/58, 38%) and a significant increase in GV3 chromatin (23/49, 47% v. 14/54, 26% and 16/58, 28%) observed in MILFSH oocytes compared with both MILNil and t = 0 oocytes, respectively. The MII rate of MILFSH oocytes following in vitro maturation was significantly higher compared with the MII rate of control in vitro matured oocytes (91/167, 55% v. 83/243, 34%). There was no significant difference in the GSH content of GV oocytes from the time of oocyte collection (t = 0) or GV oocytes following PMC in MILFSH (3.69 ± 0.16 and 4.14 ± 0.28 pmol/oocyte, n = 39–49 oocytes). The GSH content of control in vitro matured MII oocytes was significantly greater than that of MILFSH-treated MII oocytes (3.13 ± 0.16 v. 2.02 ± 0.04 pmol/oocyte, n =53–54 oocytes). The PMC supported high rates of nuclear maturation, but cytoplasmic maturation, assessed by GSH content, was negatively affected. Further assessment following fertilization and development is required to determine the practical utility of PMC in a primate in vitro maturation setting.


Sign in / Sign up

Export Citation Format

Share Document