scholarly journals Patterns of Connectivity and Isolation in Marine Populations

2021 ◽  
Author(s):  
◽  
Pelayo Salinas de León

<p>There is ongoing debate about the levels of connectivity among marine populations and despite its importance, there is limited information on the levels of population connectivity in most geographic locations. This lack of information severely limits our ability to adequately manage the marine environment including the design and implementation of Marine Reserve (MRs) networks. The specific objectives of this thesis were to: 1) Develop polymorphic microsatellite loci for my model species, the intertidal gastropod Austrolittorina cincta; 2) Conduct population genetic studies across A.cincta populations within the Cook strait region to asses the levels of connectivity within the regional marine reserve network; 3) Determine the levels of A. cincta larval movement and settlement from an isolated source; and 4) Asses the effect of the larval abundance on settlement rates. This thesis includes laboratory studies; population genetic studies; and field surveys within New Zealand and in the Wakatobi National Park, Indonesia. Eight novel polymorphic microsatellite loci were developed for A. cincta and five of these loci were used to investigate population connectivity across seven populations within the Cook Strait region, including four marine reserves. In the population genetics study, in contrast to what was expected, I recorded low, but significant genetic differentiation between most population pairs within the Cook Strait region, over a minimum and maximum spatial scale of 55 to 300 km, including several of the MRs. In a large-scale field settlement survey on the Kapiti coast combined with the use of microsatellite markers I investigated A. cincta larval movement and settlement and found that most larvae settle within 5 km, although some larvae might travel up to 50 km. Finally, the coral settlement studies in the Wakatobi National Park revealed lower coral settlement rates at sites with low adult coral cover, suggesting an effect of the the amount of local available larvae on coral settlement rates. While it has been suggested that marine populations are demographically open, with larvae connecting populations separated over large spatial scales, this thesis shows that populations might not be as open as previously considered and localized dispersal and self-recruitment processes might be a frequent feature in marine populations. This thesis provides valuable information to managers about marine reserve networks and the importance of adequate environmental protection to ensure future viable populations.</p>

2021 ◽  
Author(s):  
◽  
Pelayo Salinas de León

<p>There is ongoing debate about the levels of connectivity among marine populations and despite its importance, there is limited information on the levels of population connectivity in most geographic locations. This lack of information severely limits our ability to adequately manage the marine environment including the design and implementation of Marine Reserve (MRs) networks. The specific objectives of this thesis were to: 1) Develop polymorphic microsatellite loci for my model species, the intertidal gastropod Austrolittorina cincta; 2) Conduct population genetic studies across A.cincta populations within the Cook strait region to asses the levels of connectivity within the regional marine reserve network; 3) Determine the levels of A. cincta larval movement and settlement from an isolated source; and 4) Asses the effect of the larval abundance on settlement rates. This thesis includes laboratory studies; population genetic studies; and field surveys within New Zealand and in the Wakatobi National Park, Indonesia. Eight novel polymorphic microsatellite loci were developed for A. cincta and five of these loci were used to investigate population connectivity across seven populations within the Cook Strait region, including four marine reserves. In the population genetics study, in contrast to what was expected, I recorded low, but significant genetic differentiation between most population pairs within the Cook Strait region, over a minimum and maximum spatial scale of 55 to 300 km, including several of the MRs. In a large-scale field settlement survey on the Kapiti coast combined with the use of microsatellite markers I investigated A. cincta larval movement and settlement and found that most larvae settle within 5 km, although some larvae might travel up to 50 km. Finally, the coral settlement studies in the Wakatobi National Park revealed lower coral settlement rates at sites with low adult coral cover, suggesting an effect of the the amount of local available larvae on coral settlement rates. While it has been suggested that marine populations are demographically open, with larvae connecting populations separated over large spatial scales, this thesis shows that populations might not be as open as previously considered and localized dispersal and self-recruitment processes might be a frequent feature in marine populations. This thesis provides valuable information to managers about marine reserve networks and the importance of adequate environmental protection to ensure future viable populations.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Kostro-Ambroziak ◽  
Anna Siekiera ◽  
Magdalena Czajkowska ◽  
Jan J. Pomorski ◽  
Hanna Panagiotopoulou

Abstract Microsatellite loci are commonly used markers in population genetic studies. In this study, we present 40 novel and polymorphic microsatellite loci elaborated for the ichneumonid parasitoid Latibulus argiolus (Rossi, 1790). Reaction condition optimisation procedures allowed 14 of these loci to be co-amplified in two PCRs and loaded in two multiplex panels onto a genetic analyser. The assay was tested on 197 individuals of L. argiolus originating from ten natural populations obtained from the host nests of paper wasps. The validated loci were polymorphic with high allele numbers ranging from eight to 27 (average 17.6 alleles per locus). Both observed and expected heterozygosity values were high, ranging between 0.75 and 0.92 for HO (mean 0.83) and from 0.70 to 0.90 for HE (mean 0.85). The optimized assay showed low genotyping error rate and negligible null allele frequency. The designed multiplex panels could be successfully applied in relatedness analyses and genetic variability studies of L. argiolus populations, which would be particularly interesting considering the coevolutionary context of this species with its social host.


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 690-692 ◽  
Author(s):  
Jiang-Chong Wu ◽  
Jing Yang ◽  
Zhi-Jian Gu ◽  
Yan-Ping Zhang

By using a modified biotin-streptavidin capturing method, a total of 20 polymorphic microsatellite markers were developed from Moringa oleifera Lam. (Moringaceae), a useful multipurpose tree. Twenty-four domesticated individuals, with germplasms of India and Myanmar, were used to screen polymorphism of these 20 microsatellite markers. The number of alleles per locus ranged from two to six. The expected and observed heterozygosity varied from 0.3608 to 0.7606 and from 0.0000 to 0.8750, respectively. Seven loci were significantly deviated from Hardy-Weinberg equilibrium. The availability of these microsatellite primers would provide a powerful tool for aspects of detailed population genetic studies of M. oleifera.


2017 ◽  
Vol 63 (3) ◽  
pp. 355-360 ◽  
Author(s):  
Rita Rácz ◽  
Judit Bereczki ◽  
András Kosztolányi ◽  
Attila Horváth ◽  
Szabolcs Sziráki ◽  
...  

2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Caroline Apolinário-Silva ◽  
Dhiego G. Ferreira ◽  
Analiza F. Cavenagh ◽  
Nícollas G. O. Aprígio ◽  
Bruno A. Galindo ◽  
...  

ABSTRACT Data on 15 novel microsatellite loci from the Neotropical fish Bryconamericus aff. iheringii are presented here. Analyses of 32 individuals from four different streams revealed 192 different alleles, ranging from four to 32 alleles per locus (mean of 12.8 per locus). Observed and expected heterozygosities ranged from 0.094 to 0.813 and 0.205 to 0.952, respectively. These loci showed high polymorphic information content and will be a resource for genetic studies of B. aff. iheringii. Furthermore, several loci also amplified other small Neotropical Characidae (Piabarchus stramineus and Piabina argentea) and should be useful for these species.


Genetica ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 313-323 ◽  
Author(s):  
M. de Garine-Wichatitsky ◽  
T. de Meeûs ◽  
C. Chevillon ◽  
D. Berthier ◽  
N. Barré ◽  
...  

2012 ◽  
Vol 279 (1736) ◽  
pp. 2281-2288 ◽  
Author(s):  
Keith Hunley ◽  
Claire Bowern ◽  
Meghan Healy

Recent genetic studies attribute the negative correlation between population genetic diversity and distance from Africa to a serial founder effects (SFE) evolutionary process. A recent linguistic study concluded that a similar decay in phoneme inventories in human languages was also the product of the SFE process. However, the SFE process makes additional predictions for patterns of neutral genetic diversity, both within and between groups, that have not yet been tested on phonemic data. In this study, we describe these predictions and test them on linguistic and genetic samples. The linguistic sample consists of 725 widespread languages, which together contain 908 distinct phonemes. The genetic sample consists of 614 autosomal microsatellite loci in 100 widespread populations. All aspects of the genetic pattern are consistent with the predictions of SFE. In contrast, most of the predictions of SFE are violated for the phonemic data. We show that phoneme inventories provide information about recent contacts between languages. However, because phonemes change rapidly, they cannot provide information about more ancient evolutionary processes.


2020 ◽  
Author(s):  
William S. Pearman ◽  
Sarah J. Wells ◽  
Olin K. Silander ◽  
Nikki E. Freed ◽  
James Dale

AbstractMarine organisms generally exhibit one of two developmental modes: biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, in contrast to our relatively good understanding of dispersal and population connectivity for biphasic species, comparatively little is known about direct developers. In this study, we use a panel of 8,020 SNPs to investigate population structure and gene flow for a direct developing species, the New Zealand endemic marine isopod Isocladus armatus. On a small spatial scale (20 kms), gene flow between locations is extremely high and suggests an island model of migration. However, over larger spatial scales (600km), populations exhibit a clear pattern of isolation-by-distance. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. Our results indicate that I. armatus exhibits significant migration across these barriers, and suggests that ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we do find evidence of a north-south population genetic break occurring between Māhia and Wellington, two locations where there are no obvious biogeographic barriers between them. We conclude that developmental life history largely predicts dispersal in intertidal marine isopods. However, localised biogeographic processes can disrupt this expectation.


Sign in / Sign up

Export Citation Format

Share Document