scholarly journals Variation in the Persistence and Effects of Argentine Ants throughout Their  Invaded Range in New Zealand

2021 ◽  
Author(s):  
◽  
Meghan Dawn Cooling

<p>Invasive ants are a serious ecological problem around the world. The Argentine ant has had devastating effects on resident ant communities and may negatively impact other invertebrates in its introduced range. First detected in Auckland in 1990, this invader has since spread widely around the country. The effect of Argentine ants on invertebrates in New Zealand was investigated by comparing ground-dwelling arthropod species richness and abundance between and among paired uninvaded and invaded sites in seven cities across this invader's New Zealand range. In order to study density-dependent effects, invaded sites were chosen so as to differ in Argentine ant population density. The effects of rainfall and mean maximum temperature on Argentine ant abundance and the species richness and abundance were also examined. Argentine ant population persistence in New Zealand was examined by re-surveying sites of past infestation across this species range. The influence of climate on population persistence was investigated, and how this effect may vary after climate change. Additionally, the potential of community recovery after invasion was also examined. Epigaeic (above ground foraging) ant species richness and abundance was negatively associated with Argentine ant abundance; however, no discernable impact was found on hypogaeic (below ground foraging) ant species. The effect of Argentine ant abundance on non-ant arthropod species richness and abundance was mixed, with most arthropod orders being unaffected. Diplopoda was negatively influenced by Argentine ant abundance while Hemiptera was positively influenced. Annual rainfall and mean maximum temperature were found to have no effect on Argentine ant abundance or resident ant species richness and abundance, though these variables did help explain the distribution of several non-ant arthropod orders. Argentine ant populations appear to be collapsing in New Zealand. Populations had a mean survival time of 14.1 years (95% CI= 12.9- 15.3 years). Climate change may prolong population survival, as survival time increased with increasing temperature and decreasing rainfall, but only by a few years. Formerly invaded Auckland ant communities were indistinguishable from those that had never been invaded, suggesting ant communities will recover after Argentine ant collapse.</p>

2021 ◽  
Author(s):  
◽  
Meghan Dawn Cooling

<p>Invasive ants are a serious ecological problem around the world. The Argentine ant has had devastating effects on resident ant communities and may negatively impact other invertebrates in its introduced range. First detected in Auckland in 1990, this invader has since spread widely around the country. The effect of Argentine ants on invertebrates in New Zealand was investigated by comparing ground-dwelling arthropod species richness and abundance between and among paired uninvaded and invaded sites in seven cities across this invader's New Zealand range. In order to study density-dependent effects, invaded sites were chosen so as to differ in Argentine ant population density. The effects of rainfall and mean maximum temperature on Argentine ant abundance and the species richness and abundance were also examined. Argentine ant population persistence in New Zealand was examined by re-surveying sites of past infestation across this species range. The influence of climate on population persistence was investigated, and how this effect may vary after climate change. Additionally, the potential of community recovery after invasion was also examined. Epigaeic (above ground foraging) ant species richness and abundance was negatively associated with Argentine ant abundance; however, no discernable impact was found on hypogaeic (below ground foraging) ant species. The effect of Argentine ant abundance on non-ant arthropod species richness and abundance was mixed, with most arthropod orders being unaffected. Diplopoda was negatively influenced by Argentine ant abundance while Hemiptera was positively influenced. Annual rainfall and mean maximum temperature were found to have no effect on Argentine ant abundance or resident ant species richness and abundance, though these variables did help explain the distribution of several non-ant arthropod orders. Argentine ant populations appear to be collapsing in New Zealand. Populations had a mean survival time of 14.1 years (95% CI= 12.9- 15.3 years). Climate change may prolong population survival, as survival time increased with increasing temperature and decreasing rainfall, but only by a few years. Formerly invaded Auckland ant communities were indistinguishable from those that had never been invaded, suggesting ant communities will recover after Argentine ant collapse.</p>


2011 ◽  
Vol 8 (3) ◽  
pp. 430-433 ◽  
Author(s):  
Meghan Cooling ◽  
Stephen Hartley ◽  
Dalice A. Sim ◽  
Philip J. Lester

Synergies between invasive species and climate change are widely considered to be a major biodiversity threat. However, invasive species are also hypothesized to be susceptible to population collapse, as we demonstrate for a globally important invasive species in New Zealand. We observed Argentine ant populations to have collapsed in 40 per cent of surveyed sites. Populations had a mean survival time of 14.1 years (95% CI = 12.9–15.3 years). Resident ant communities had recovered or partly recovered after their collapse. Our models suggest that climate change will delay colony collapse, as increasing temperature and decreasing rainfall significantly increased their longevity, but only by a few years. Economic and environmental costs of invasive species may be small if populations collapse on their own accord.


2021 ◽  
Author(s):  
◽  
Alexandra Sébastien

<p>Invasive species can lead to major economic and ecological issues. For this reason, biological controls are being developed in order to help with invasive species population management. Pathogenic bacteria and viruses offer good biological control opportunities as both micro-organisms have played a role in natural population declines. However, beneficial bacteria and viruses associated with the targeted invasive species may interfere with biological controls, by protecting their hosts from infections. Previous knowledge on both pathogenic and beneficial bacteria and viruses present in invasive species may then support the development of an active and efficient biological control.  The Argentine ant, Linepithema humile, is a South American invasive ant species that has successfully spread over five continents. The ants were introduced to New Zealand after a complex invasion path, from Argentina their home range to Europe, then to Australia and finally to New Zealand. In their new environments, invasive Argentine ants affect species diversity and can cause agricultural losses. In the absence of any biological controls, the Argentine ant population is controlled by chemical sprays and poison baits. Management of these invasive ants in New Zealand is estimated to cost NZ$ 60 million a year. The Argentine ant population in New Zealand was reported to have unexpectedly declined. It was hypothesised that pathogens were the cause of this population collapse.  In this study, bacteria and viruses present in the invasive ants were investigated using 454 sequencing and Illumina sequencing for future developments of possible biological controls for the Argentine ants, and a better understanding of the observed population decline in New Zealand. Bacterial diversity present in Argentine ants either declined or diminished along the invasion pathway. At the same time, the invasive ants maintained a core of nine bacteria genera, including Lactobacillus and Gluconobacter, two bacterial genera with members known for their beneficial associations with honey bees. The presence of these core bacteria may have participated in the success of Argentine ants in their new environments. In the laboratory, the use of ampicillin and gentamicin antibiotics on the ants increased bacterial diversity present in the ants. Furthermore, ampicillin, kanamycin and spectinomycin antibiotic treatments increased ant survival but did not affect the ant fitness or intra-species aggressiveness. Only spectinomycin treated ants presented a higher level of inter-species aggressiveness. Bacterial diversity may play an important role in the ant health and at length population dynamics.  Finally, Argentine ants are the hosts of two viruses: the Deformed wing virus (DWV) involved in colony collapse disorder in honey bees, and Linepithema humile virus 1 (LHUV-1), a new virus related to DWV. Both viruses actively replicate within the ants, indicating a possible reservoir role of the ants. However, the effects of the viruses on the ants are not yet known. Further viral infection in the laboratory under different stress conditions and / or antibiotic treatment will give an insight in the role played by these viruses in the observed population collapse of Argentine ants in New Zealand. LHUV-1 may offer a possibility in the development of the first biological control for Argentine ants, depending on its specificity and its effects.  This dissertation provides a first insight in the core bacteria as well as potential harmful viruses present in Argentine ants. These bacteria and viruses may play a role in the ant population dynamics. Invasive species may co-introduce harmful pathogens with them, and participate to the spread of local ones. The pathogens may affect both invasive ants and native species population dynamics.</p>


2015 ◽  
Vol 11 (9) ◽  
pp. 20150610 ◽  
Author(s):  
Alexandra Sébastien ◽  
Philip J. Lester ◽  
Richard J. Hall ◽  
Jing Wang ◽  
Nicole E. Moore ◽  
...  

When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile ). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.


2021 ◽  
Author(s):  
◽  
Habteab Tsegai Habtom

<p>Invasive species have been recognized as one of the greatest threats to global biodiversity and can have dire economic consequences. Yet rates of invasion are increasing due to the fast and growing network of transportation across the globe. The establishment, spread and impact of invasive species are affected by environmental conditions as well as resident species. Species respond differently to the same abiotic factors and different native species can respond either positively or negatively to invasion. The interaction between invasive and resident species, as well as the effect of temperature on invasive species, has gained much attention. The synergistic effect of suboptimal temperature and biotic resistance could have a much stronger limiting or controlling effect on invasive species than either factor alone. Linepithema humile (Argentine ants) are invasive species originally from a Mediterranean climate, but successfully spreading into extra range habitats. The establishment and spread of these ants in temperate New Zealand represents an ideal model system for studying invasion biology in terms of temperature limits and biotic resistance effects. I investigated the changing distribution of the invasive species the Argentine ants over multiple years at five sites in New Zealand. To test whether their rate of spread corresponds with microclimate I investigated their fine-scare distribution patterns and evaluated the number of generations they may develop seasonally and annually in different microhabitat types. I also evaluated their impact on other arthropod species. I conducted a laboratory experiment to evaluate the effect of temperature on their aggression towards other species, walking speed, and foraging abundance. Similarly, I tested the effect of biotic resistance from other ant species (Monomorium antarcticum and Prolasius advenus) with varying colony sizes. I investigated whether there was any interactive effect of temperature and biotic resistance on the Argentine ants. The distribution of Argentine ants had declined across many invasion fronts over the past 7-8 years. They were more likely to be found in concrete, short grass and sandy habitats, which provide warm microsites. Degree-day calculations predicted that they could develop between 2.5 to 3 generations in each of the above microhabitats per year in urban and rural sites while they were predicted to be unable to develop one generation under tree habitats. In tall grass microhabitats they were predicted to develop between 1-1.5 generations per year. The Argentine ants were hypothesised to adversely affect many other arthropod species. Richness and abundance of resident beetle species were negatively correlated with the invasion of the Argentine ants. Areas invaded by the Argentine ants were also associated with a greater number of exotic beetle species, which may imply secondary invasion. Laboratory experiments showed that lowering temperatures below 17°C negatively affected the Argentine ants‟ walking speed, foraging abundance, aggression and their resource control. A high colony size of M. antarcticum (the competing ant species) affected the foraging success of Argentine ants, and the effect was stronger when coupled with unsuitable temperature (17°C and below). Therefore, Argentine ants are weak competitors at low temperature levels. The results of my thesis underline the importance of biotic and abiotic resistances, their interactive effect as well as the effect of the Argentine ants on other species. Based on climatic considerations and the habitat preferences of resident species it may be possible to predict future spread of the Argentine ants. More importantly, knowledge of microhabitat preferences and biotic resistance may help future control measures against Argentine ants based on management of vegetation structure and microhabitat availability.</p>


2021 ◽  
Author(s):  
◽  
Habteab Tsegai Habtom

<p>Invasive species have been recognized as one of the greatest threats to global biodiversity and can have dire economic consequences. Yet rates of invasion are increasing due to the fast and growing network of transportation across the globe. The establishment, spread and impact of invasive species are affected by environmental conditions as well as resident species. Species respond differently to the same abiotic factors and different native species can respond either positively or negatively to invasion. The interaction between invasive and resident species, as well as the effect of temperature on invasive species, has gained much attention. The synergistic effect of suboptimal temperature and biotic resistance could have a much stronger limiting or controlling effect on invasive species than either factor alone. Linepithema humile (Argentine ants) are invasive species originally from a Mediterranean climate, but successfully spreading into extra range habitats. The establishment and spread of these ants in temperate New Zealand represents an ideal model system for studying invasion biology in terms of temperature limits and biotic resistance effects. I investigated the changing distribution of the invasive species the Argentine ants over multiple years at five sites in New Zealand. To test whether their rate of spread corresponds with microclimate I investigated their fine-scare distribution patterns and evaluated the number of generations they may develop seasonally and annually in different microhabitat types. I also evaluated their impact on other arthropod species. I conducted a laboratory experiment to evaluate the effect of temperature on their aggression towards other species, walking speed, and foraging abundance. Similarly, I tested the effect of biotic resistance from other ant species (Monomorium antarcticum and Prolasius advenus) with varying colony sizes. I investigated whether there was any interactive effect of temperature and biotic resistance on the Argentine ants. The distribution of Argentine ants had declined across many invasion fronts over the past 7-8 years. They were more likely to be found in concrete, short grass and sandy habitats, which provide warm microsites. Degree-day calculations predicted that they could develop between 2.5 to 3 generations in each of the above microhabitats per year in urban and rural sites while they were predicted to be unable to develop one generation under tree habitats. In tall grass microhabitats they were predicted to develop between 1-1.5 generations per year. The Argentine ants were hypothesised to adversely affect many other arthropod species. Richness and abundance of resident beetle species were negatively correlated with the invasion of the Argentine ants. Areas invaded by the Argentine ants were also associated with a greater number of exotic beetle species, which may imply secondary invasion. Laboratory experiments showed that lowering temperatures below 17°C negatively affected the Argentine ants‟ walking speed, foraging abundance, aggression and their resource control. A high colony size of M. antarcticum (the competing ant species) affected the foraging success of Argentine ants, and the effect was stronger when coupled with unsuitable temperature (17°C and below). Therefore, Argentine ants are weak competitors at low temperature levels. The results of my thesis underline the importance of biotic and abiotic resistances, their interactive effect as well as the effect of the Argentine ants on other species. Based on climatic considerations and the habitat preferences of resident species it may be possible to predict future spread of the Argentine ants. More importantly, knowledge of microhabitat preferences and biotic resistance may help future control measures against Argentine ants based on management of vegetation structure and microhabitat availability.</p>


Author(s):  
César A. Cárdenas ◽  
Simon K. Davy ◽  
James J. Bell

Experimental removals of the dominant canopy-forming kelp Ecklonia radiata were conducted at two sites on rocky walls in New Zealand and monitored for approximately 1.5 years. We hypothesized that the removal of the E. radiata canopy would affect the structure of subcanopy assemblages, such that there would be a reduction in sponge species richness and abundance. Furthermore, we investigated the biological and physical (predictor) variables that best explained variability in sponge assemblages after canopy removal. Canopy removal led to a community dominated by turf algae, which corresponded with a decrease in sponge abundance and richness. Our results suggest that the Ecklonia canopy may positively influence the presence of sponge species such as Crella incrustans; we propose that the canopy may allow its coexistence with turf algae underneath the canopy by altering the light regime and other environmental factors, which may be detrimental for some species. Our results highlight how any loss of canopy-forming species might have negative effects on sponge assemblages, which could affect the energy flow and the overall biodiversity found in these habitats.


2016 ◽  
Vol 138 (1-2) ◽  
pp. 143-156 ◽  
Author(s):  
Robin Pouteau ◽  
Jean-Yves Meyer ◽  
Pauline Blanchard ◽  
Joel H. Nitta ◽  
Maruiti Terorotua ◽  
...  

2021 ◽  
Author(s):  
◽  
Alexandra Sébastien

<p>Invasive species can lead to major economic and ecological issues. For this reason, biological controls are being developed in order to help with invasive species population management. Pathogenic bacteria and viruses offer good biological control opportunities as both micro-organisms have played a role in natural population declines. However, beneficial bacteria and viruses associated with the targeted invasive species may interfere with biological controls, by protecting their hosts from infections. Previous knowledge on both pathogenic and beneficial bacteria and viruses present in invasive species may then support the development of an active and efficient biological control.  The Argentine ant, Linepithema humile, is a South American invasive ant species that has successfully spread over five continents. The ants were introduced to New Zealand after a complex invasion path, from Argentina their home range to Europe, then to Australia and finally to New Zealand. In their new environments, invasive Argentine ants affect species diversity and can cause agricultural losses. In the absence of any biological controls, the Argentine ant population is controlled by chemical sprays and poison baits. Management of these invasive ants in New Zealand is estimated to cost NZ$ 60 million a year. The Argentine ant population in New Zealand was reported to have unexpectedly declined. It was hypothesised that pathogens were the cause of this population collapse.  In this study, bacteria and viruses present in the invasive ants were investigated using 454 sequencing and Illumina sequencing for future developments of possible biological controls for the Argentine ants, and a better understanding of the observed population decline in New Zealand. Bacterial diversity present in Argentine ants either declined or diminished along the invasion pathway. At the same time, the invasive ants maintained a core of nine bacteria genera, including Lactobacillus and Gluconobacter, two bacterial genera with members known for their beneficial associations with honey bees. The presence of these core bacteria may have participated in the success of Argentine ants in their new environments. In the laboratory, the use of ampicillin and gentamicin antibiotics on the ants increased bacterial diversity present in the ants. Furthermore, ampicillin, kanamycin and spectinomycin antibiotic treatments increased ant survival but did not affect the ant fitness or intra-species aggressiveness. Only spectinomycin treated ants presented a higher level of inter-species aggressiveness. Bacterial diversity may play an important role in the ant health and at length population dynamics.  Finally, Argentine ants are the hosts of two viruses: the Deformed wing virus (DWV) involved in colony collapse disorder in honey bees, and Linepithema humile virus 1 (LHUV-1), a new virus related to DWV. Both viruses actively replicate within the ants, indicating a possible reservoir role of the ants. However, the effects of the viruses on the ants are not yet known. Further viral infection in the laboratory under different stress conditions and / or antibiotic treatment will give an insight in the role played by these viruses in the observed population collapse of Argentine ants in New Zealand. LHUV-1 may offer a possibility in the development of the first biological control for Argentine ants, depending on its specificity and its effects.  This dissertation provides a first insight in the core bacteria as well as potential harmful viruses present in Argentine ants. These bacteria and viruses may play a role in the ant population dynamics. Invasive species may co-introduce harmful pathogens with them, and participate to the spread of local ones. The pathogens may affect both invasive ants and native species population dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document