scholarly journals Peptide-Directed Supramolecular Self-Assembly of N-Substituted Perylene Imides

2021 ◽  
Author(s):  
◽  
Galen Eakins

<p>Synthetic peptides offer enormous potential to encode the assembly of molecular electronic components, provided that the complex range of interactions is distilled into simple design rules. Herein is reported a spectroscopic investigation of aggregation in an extensive series of peptide-perylene imide conjugates designed to interrogate the effect of structural variations. Throughout the course of this study, the self-assembly and photophysical properties of the compounds are explored to better understand the behavior and application of these materials. Three principal avenues of inquiry are applied: (1) the evaluation of structure-property relationships from a thermodynamic perspective, (2) the examination of peptide chiral effects upon properties and self-assembly, and (3) an application of the understanding gained from rationally designed systems to effectively utilize naturally optimized peptides in bio-organic electronics.  By fitting different contributions to temperature-dependent optical absorption spectra, this study quantifies both the thermodynamics and the nature of aggregation for peptides with incrementally varying hydrophobicity, charge density, length, amphiphilic substitution with a hexyl chain, and stereocenter inversion. Coarse effects like hydrophobicity and hexyl substitution are seen to have the greatest impact on binding thermodynamics, which are evaluated separately as enthalpic and entropic contributions. Moreover, significant peptide packing effects are resolved via stereocenter inversion studies, particularly when examining the nature of aggregates formed and the coupling between π-electronic orbitals.  Peptide chirality overall is seen to influence the self-assembly of the perylene imide cores into chiral nanofibers, and peptide stereogenic positions, stereochemical configurations, amphiphilic substitution, and perylene core modification are evaluated with respect to chiral assembly. Stereocenters in peptide residue positions proximal to the perylene core (1-5 units) are seen to impart helical chirality to the perylene core, while stereocenters in more distal residue positions do not exert a chiral influence. Diastereomers involving stereocenter inversions within the proximal residues consequently manifest spectroscopically as pseudo-enantiomers. Increased side-chain steric demand in the proximal positions gives a similar chiral influence but exhibits diminished Cotton Effect intensity with additional longer wavelength features attributed to interchain excimers. Amphiphilic substitution of a peptide with an alkyl chain disrupts chiral self-assembly, while an amphiphilic structure achieved through the modification of the perylene imide core with a bisester moiety prompts strongly exciton-coupled, chiral, solvent-responsive self-assembly into long nanofilaments.  Informed by rationally designed sequences, and capitalizing upon the optimization seen in many natural systems, specific peptide sequences designed by inspection of protein-protein interfaces have been identified and used as tectons in hybrid functional materials. An 8-mer peptide derived from an interface of the peroxiredoxin family of self-assembling proteins is exploited to encode the assembly of perylene imide-based organic semiconductor building blocks. By augmenting the peptide with additional functionality to trigger aggregation and manipulate the directionality of peptide-semiconductor coupling, a series of hybrid materials based on the natural peptide interface is presented. Using spectroscopic probes, the mode of self-assembly and the electronic coupling between neighboring perylene units is shown to be strongly affected by the number of peptides attached, and by their backbone directionality. The disubstituted material with peptides extending in the N-C direction away from the perylene core exhibits strong coupling and long-range order, which are both attractive properties for electronic device applications. A bio-organic field-effect transistor is fabricated using this material, highlighting the possibilities of exploiting natural peptide tectons to encode self-assembly in other functional materials and devices.  These results advance the development of a quantitative framework for establishing structure-function relationships that will underpin the design of self-assembling peptide electronic materials. The results further advance a model for adapting natural peptide sequences resident in β-continuous interfaces as tectons for bio-organic electronics.</p>

2021 ◽  
Author(s):  
◽  
Galen Eakins

<p>Synthetic peptides offer enormous potential to encode the assembly of molecular electronic components, provided that the complex range of interactions is distilled into simple design rules. Herein is reported a spectroscopic investigation of aggregation in an extensive series of peptide-perylene imide conjugates designed to interrogate the effect of structural variations. Throughout the course of this study, the self-assembly and photophysical properties of the compounds are explored to better understand the behavior and application of these materials. Three principal avenues of inquiry are applied: (1) the evaluation of structure-property relationships from a thermodynamic perspective, (2) the examination of peptide chiral effects upon properties and self-assembly, and (3) an application of the understanding gained from rationally designed systems to effectively utilize naturally optimized peptides in bio-organic electronics.  By fitting different contributions to temperature-dependent optical absorption spectra, this study quantifies both the thermodynamics and the nature of aggregation for peptides with incrementally varying hydrophobicity, charge density, length, amphiphilic substitution with a hexyl chain, and stereocenter inversion. Coarse effects like hydrophobicity and hexyl substitution are seen to have the greatest impact on binding thermodynamics, which are evaluated separately as enthalpic and entropic contributions. Moreover, significant peptide packing effects are resolved via stereocenter inversion studies, particularly when examining the nature of aggregates formed and the coupling between π-electronic orbitals.  Peptide chirality overall is seen to influence the self-assembly of the perylene imide cores into chiral nanofibers, and peptide stereogenic positions, stereochemical configurations, amphiphilic substitution, and perylene core modification are evaluated with respect to chiral assembly. Stereocenters in peptide residue positions proximal to the perylene core (1-5 units) are seen to impart helical chirality to the perylene core, while stereocenters in more distal residue positions do not exert a chiral influence. Diastereomers involving stereocenter inversions within the proximal residues consequently manifest spectroscopically as pseudo-enantiomers. Increased side-chain steric demand in the proximal positions gives a similar chiral influence but exhibits diminished Cotton Effect intensity with additional longer wavelength features attributed to interchain excimers. Amphiphilic substitution of a peptide with an alkyl chain disrupts chiral self-assembly, while an amphiphilic structure achieved through the modification of the perylene imide core with a bisester moiety prompts strongly exciton-coupled, chiral, solvent-responsive self-assembly into long nanofilaments.  Informed by rationally designed sequences, and capitalizing upon the optimization seen in many natural systems, specific peptide sequences designed by inspection of protein-protein interfaces have been identified and used as tectons in hybrid functional materials. An 8-mer peptide derived from an interface of the peroxiredoxin family of self-assembling proteins is exploited to encode the assembly of perylene imide-based organic semiconductor building blocks. By augmenting the peptide with additional functionality to trigger aggregation and manipulate the directionality of peptide-semiconductor coupling, a series of hybrid materials based on the natural peptide interface is presented. Using spectroscopic probes, the mode of self-assembly and the electronic coupling between neighboring perylene units is shown to be strongly affected by the number of peptides attached, and by their backbone directionality. The disubstituted material with peptides extending in the N-C direction away from the perylene core exhibits strong coupling and long-range order, which are both attractive properties for electronic device applications. A bio-organic field-effect transistor is fabricated using this material, highlighting the possibilities of exploiting natural peptide tectons to encode self-assembly in other functional materials and devices.  These results advance the development of a quantitative framework for establishing structure-function relationships that will underpin the design of self-assembling peptide electronic materials. The results further advance a model for adapting natural peptide sequences resident in β-continuous interfaces as tectons for bio-organic electronics.</p>


2013 ◽  
Vol 66 (1) ◽  
pp. 9 ◽  
Author(s):  
Yi Liu ◽  
Zhan-Ting Li

The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.


2018 ◽  
Author(s):  
Weimin Xuan ◽  
Robert Pow ◽  
Qi Zheng, ◽  
Nancy Watfa ◽  
De-Liang Long ◽  
...  

Template synthesis is a powerful and useful approach to build a variety of functional materials and complicated supramolecular systems. Systematic study on how templates structurally evolve from basic building blocks and then affect the templated self-assembly is critical to understand the underlying mechanism and gain more guidance for designed assembly but remains challenging. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using L-ornithine as structure-directing agent. L-ornithine is essential for the formation of such kind of template⊂host assemblies by providing directional forces of hydrogen bonding and electrostatic interactions. Based on the structural relationship between encapsulated templates of {Mo8} (1), {Mo17} (2) and {Mo36} (4), a plausible pathway of the structural evolution of templates is proposed, thus giving more insight on the templated self-assembly of Mo Blue clusters.


1996 ◽  
Vol 61 (10) ◽  
pp. 1464-1472 ◽  
Author(s):  
Daniel Alexander ◽  
Petr Holý ◽  
Pavel Fiedler ◽  
Zdeněk Havlas ◽  
Jiří Závada

Concise synthesis of the tris(pyrimidones) 1a,b is described. Molecular modeling study demonstrated that both the prepared models 1a,b are capable of self-assembling under formation of spherical dimers locked by 18 hydrogen bonds. Extreme insolubility in all common solvents precluded investigation of the self-assembly in solution. Circumstantial evidence in favor of the self-assembly has been provided in the solid and gas phase.


2016 ◽  
Vol 45 (14) ◽  
pp. 3935-3953 ◽  
Author(s):  
Kai Tao ◽  
Aviad Levin ◽  
Lihi Adler-Abramovich ◽  
Ehud Gazit

In this review, the studies on the self-assembly of Fmoc-modified biomolecules and their relevant applications in diverse advanced fields are summarized.


2020 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
Carolina Amorim ◽  
Peter J. Jervis ◽  
Juliana Andrade ◽  
Paula M. T. Ferreira ◽  
José A. Martins

The self-assembly of nanometric structures from molecular building blocks is an effectiveway to make new functional materials for biological and technological applications. [...]


2021 ◽  
Author(s):  
Carolina Amorim ◽  
Sergio R.S. Veloso ◽  
Elisabete M.S. Castanheira ◽  
Loic Hilliou ◽  
Renato B. Pereira ◽  
...  

<div>The self-assembly of nanometric structures from molecular building blocks is an effective</div><div>way to make new functional materials for biological and technological applications. In this work</div><div>four symmetrical bolaamphiphiles based on dehydrodipeptides</div><div>(phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl</div><div>or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared and</div><div>their self-assembly properties studied. The results showed that all compounds with the exception</div><div>of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid</div><div>gave self-standing hydrogels with critical gelation concentrations of 0.3 and 0.4 wt% using a pH</div><div>trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy,</div><div>which revealed a network of entangled fibres. According to rheology the dehydrodipeptide</div><div>bolaamphiphile hydrogelators are viscoelastic materials with an elastic modulus G’ that falls in</div><div>the range of native tissue (0.37 kPa brain – 4.5 kPa cartilage). In viability and proliferation studies,</div><div>it was found that these compounds were non-toxic towards the human keratinocyte cell line,</div><div>HaCaT. In sustained release assays, we studied the effects of the charge present on the model</div><div>drug compound on the rate of cargo release from the hydrogel networks. Methylene blue (MB),</div><div>methyl orange (MO) and ciprofloxacin were chosen as cationic, anionic and overall neutral cargo,</div><div>respectively. These studies have shown that the hydrogels provide a sustained release of methyl</div><div>orange and ciprofloxacin, while the methylene blue is retained by the hydrogel network.</div>


2021 ◽  
Author(s):  
Carolina Amorim ◽  
Sergio R.S. Veloso ◽  
Elisabete M.S. Castanheira ◽  
Loic Hilliou ◽  
Renato B. Pereira ◽  
...  

<div>The self-assembly of nanometric structures from molecular building blocks is an effective</div><div>way to make new functional materials for biological and technological applications. In this work</div><div>four symmetrical bolaamphiphiles based on dehydrodipeptides</div><div>(phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl</div><div>or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared and</div><div>their self-assembly properties studied. The results showed that all compounds with the exception</div><div>of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid</div><div>gave self-standing hydrogels with critical gelation concentrations of 0.3 and 0.4 wt% using a pH</div><div>trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy,</div><div>which revealed a network of entangled fibres. According to rheology the dehydrodipeptide</div><div>bolaamphiphile hydrogelators are viscoelastic materials with an elastic modulus G’ that falls in</div><div>the range of native tissue (0.37 kPa brain – 4.5 kPa cartilage). In viability and proliferation studies,</div><div>it was found that these compounds were non-toxic towards the human keratinocyte cell line,</div><div>HaCaT. In sustained release assays, we studied the effects of the charge present on the model</div><div>drug compound on the rate of cargo release from the hydrogel networks. Methylene blue (MB),</div><div>methyl orange (MO) and ciprofloxacin were chosen as cationic, anionic and overall neutral cargo,</div><div>respectively. These studies have shown that the hydrogels provide a sustained release of methyl</div><div>orange and ciprofloxacin, while the methylene blue is retained by the hydrogel network.</div>


Author(s):  
Hee-Jin Kim ◽  
Sungwoo Cho ◽  
Seung Joo Oh ◽  
Sung Gyu Shin ◽  
Hee Wook Ryu ◽  
...  

Hydrogels incorporated with hydrophobic motifs have received considerable attention to recapitulate the cellular microenvironments, specifically for the bio-mineralization of a 3D matrix. Introduction of hydrophobic motifs into a hydrogel often results in irregular arrangement of the motifs, and further phase separation of hydrophobic domains, but limited efforts have been made to resolve this challenge in the hydrophobically-modified hydrogel. Therefore, this study presents an advanced integrative strategy to incorporate hydrophobic domains regularly in a hydrogel by self-assembling of polymer cross-linkers, building blocks of a hydrogel. Self-assemblies between polymer cross-linkers were examined as micro-domains to incorporate hydrophobic motifs in a hydrogel. The self-assembled structures in a pre-gelled solution were confirmed with the fluorescence analysis and the hydrophobicity of a hydrogel could be tuned by incorporating the motifs in a controlled manner. Overall, the results of this study would greatly serve to tuning performance of a wide array of hydrophobically-modified hydrogels in drug delivery, cell therapies and tissue engineering.


2018 ◽  
Author(s):  
Weimin Xuan ◽  
Robert Pow ◽  
Qi Zheng, ◽  
Nancy Watfa ◽  
De-Liang Long ◽  
...  

Template synthesis is a powerful and useful approach to build a variety of functional materials and complicated supramolecular systems. Systematic study on how templates structurally evolve from basic building blocks and then affect the templated self-assembly is critical to understand the underlying mechanism and gain more guidance for designed assembly but remains challenging. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using L-ornithine as structure-directing agent. L-ornithine is essential for the formation of such kind of template⊂host assemblies by providing directional forces of hydrogen bonding and electrostatic interactions. Based on the structural relationship between encapsulated templates of {Mo8} (1), {Mo17} (2) and {Mo36} (4), a plausible pathway of the structural evolution of templates is proposed, thus giving more insight on the templated self-assembly of Mo Blue clusters.


Sign in / Sign up

Export Citation Format

Share Document