scholarly journals Probing the interactions between dye molecules and metallic nanoparticles - Implications for surface enhanced spectroscopies

2021 ◽  
Author(s):  
◽  
Brendan Darby

<p>The work in this thesis focuses on improving the understanding of two key aspects of the interaction between dye molecules and metallic nanoparticles, with particular relevance to Surface Enhanced Raman Spectroscopy (SERS). This is manifested from two main branches of experimental work; the first is concerned with improving the reproducibility of SERS sample preparation using colloidal solutions while the second focuses on directly measuring the absorption spectra of commonly used dye molecules on the surface of colloidal silver nanoparticles.  In the first body of work of the thesis, a major step towards improving SERS in colloidal solutions is achieved by highlighting a crucial, but unnoticed possible source of error for such samples; by comparing average enhancement factor measurements on colloidal solutions prepared using different analyte (dye) dilution methods, it is shown that large dye dilution factors can cause extreme variations in nanoparticle coverage across the entire sample. This not only causes analyte-dependent enhancement factors (which is highly undesirable) but can also lead to false identification of single-molecule SERS experiments using the well established bi-analyte method.  The errors associated with large dilution factors are interpreted as a competition between dye diffusion and adsorption kinetics. Time dependent fluorescence quenching measurements and finite element modelling (FEM) in COMOSL show that in any system where adsorption competes with diffusion, large dilution factors should be avoided. A simple protocol of half-half dilutions of analytes is proposed as a standard method to be adopted when preparing colloidal solutions for SERS to ensure uniform distribution of analytes is achieved.  The second body of work is an experimental investigation of the modification of the energy levels of commonly used dye molecules adsorbed to spherical silver nanoparticles at sub-monolayer concentrations. Through the use of a novel integrating sphere setup, the absorption spectra of Rhodamine 6G, Nile Blue, Rhodamine 700 and Crystal Violet are successfully measured on the surface of silver colloids at ultra-low concentrations where dye-dye interactions are negligible. These results indicate that for most dyes, absorption pectra on the colloid surface are shifted and/or broadened with respect to the free dye in solution. In the most extreme case, a blue shift of almost 90 nm for Crystal Violet suggests a strong chemical interaction with the silver surface.  A Mie theory shell model of dye-coated silver spheres is found to accurately reproduce the measured evolution of absorption spectra as the dye concentration on the colloid surface is increased but overestimates the enhancement in absorption, which is interpreted as a result of the adsorption geometry of dyes on the surface, not captured by the shell model.  Finally, through careful wavelength dependent SERS measurements, the SERS Raman excitation profile of Crystal Violet is measured and shown to be closely linked to the modified absorbance as obtained in the integrating sphere setup. A standard optical transform model for computing the Raman excitation profile from the modified absorbance is applied and gives good agreement with the measured SERS data. These results represent a direct indication of chemical modifications of resonant molecules used in SERS studies.</p>

2021 ◽  
Author(s):  
◽  
Brendan Darby

<p>The work in this thesis focuses on improving the understanding of two key aspects of the interaction between dye molecules and metallic nanoparticles, with particular relevance to Surface Enhanced Raman Spectroscopy (SERS). This is manifested from two main branches of experimental work; the first is concerned with improving the reproducibility of SERS sample preparation using colloidal solutions while the second focuses on directly measuring the absorption spectra of commonly used dye molecules on the surface of colloidal silver nanoparticles.  In the first body of work of the thesis, a major step towards improving SERS in colloidal solutions is achieved by highlighting a crucial, but unnoticed possible source of error for such samples; by comparing average enhancement factor measurements on colloidal solutions prepared using different analyte (dye) dilution methods, it is shown that large dye dilution factors can cause extreme variations in nanoparticle coverage across the entire sample. This not only causes analyte-dependent enhancement factors (which is highly undesirable) but can also lead to false identification of single-molecule SERS experiments using the well established bi-analyte method.  The errors associated with large dilution factors are interpreted as a competition between dye diffusion and adsorption kinetics. Time dependent fluorescence quenching measurements and finite element modelling (FEM) in COMOSL show that in any system where adsorption competes with diffusion, large dilution factors should be avoided. A simple protocol of half-half dilutions of analytes is proposed as a standard method to be adopted when preparing colloidal solutions for SERS to ensure uniform distribution of analytes is achieved.  The second body of work is an experimental investigation of the modification of the energy levels of commonly used dye molecules adsorbed to spherical silver nanoparticles at sub-monolayer concentrations. Through the use of a novel integrating sphere setup, the absorption spectra of Rhodamine 6G, Nile Blue, Rhodamine 700 and Crystal Violet are successfully measured on the surface of silver colloids at ultra-low concentrations where dye-dye interactions are negligible. These results indicate that for most dyes, absorption pectra on the colloid surface are shifted and/or broadened with respect to the free dye in solution. In the most extreme case, a blue shift of almost 90 nm for Crystal Violet suggests a strong chemical interaction with the silver surface.  A Mie theory shell model of dye-coated silver spheres is found to accurately reproduce the measured evolution of absorption spectra as the dye concentration on the colloid surface is increased but overestimates the enhancement in absorption, which is interpreted as a result of the adsorption geometry of dyes on the surface, not captured by the shell model.  Finally, through careful wavelength dependent SERS measurements, the SERS Raman excitation profile of Crystal Violet is measured and shown to be closely linked to the modified absorbance as obtained in the integrating sphere setup. A standard optical transform model for computing the Raman excitation profile from the modified absorbance is applied and gives good agreement with the measured SERS data. These results represent a direct indication of chemical modifications of resonant molecules used in SERS studies.</p>


2020 ◽  
Vol 1 (2) ◽  
pp. 146-152 ◽  
Author(s):  
Satheeshkumar Elumalai ◽  
John R. Lombardi ◽  
Masahiro Yoshimura

The resonance Raman signal enhancement of crystal violet dyes onto the two-dimensional MXene–Ti3C2Tx film, so called MXenes-enhanced resonance Raman scattering (MERRS), is reported with a calculated enhancement factor of 3.42 × 109.


2020 ◽  
Author(s):  
Baptiste Auguié ◽  
Brendan Darby ◽  
Eric Le Ru

Enhanced interaction between light and molecules adsorbed on metallic nanoparticles is a cornerstone of plasmonics and surface-enhanced spectroscopies. Recent experimental access to the electronic absorption spectrum of dye molecules on silver colloids at low molecular coverage has revealed subtle changes in the spectral shape that may be attributed to a combination of factors, from a chemical modification of the molecule in contact with a metal surface to electromagnetic dye–dye and dye–metal interactions. Here we develop an original model to rigorously address the electromagnetic effects. The dye molecules are described as coupled anisotropic polarisable dipoles and their interaction with the core metal particle is described using a generalised Mie theory. The theory is readily amenable to numerical implementation and yields far-field optical cross-sections that can be compared to experimental results. We apply this model to specific adsorption geometries of practical interest to highlight the effect of molecular orientation on predicted spectral shifts and enhancement factors, as a function of surface coverage. These are compared to experimental results and reproduce the measured spectral changes as a function of concentration. These results have direct implications for the interpretation of surface selection rules and enhancement factors in surface-enhanced spectroscopies, and of orientation and coverage effects in molecular/plasmonic resonance coupling experiments.


2020 ◽  
Vol 15 (11) ◽  
pp. 1321-1326
Author(s):  
Aning Ma ◽  
Wenjing Wei ◽  
Zhongqiang Zhang ◽  
Sichang Peng ◽  
Yurong Wang ◽  
...  

An efficient surface-enhanced Raman scattering substrate based on silver nanoparticles/silicon pyramid arrays structure is theoretically investigated and experimentally demonstrated. The electric field distributions using finite-element-method are calculated. The surface-enhanced Raman scattering behaviors of sensitivity, uniformity and stability are emphatically discussed and compared by the detection of crystal violet. These theoretical and experimental results reveal that the silver nanoparticles/silicon pyramid arrays substrate is expected to be an effective surface-enhanced Raman scattering platform for label-free sensitive surfaceenhanced Raman spectroscopy detection in areas of biotechnology, medicine and food safety.


2020 ◽  
Vol 20 (5) ◽  
pp. 3195-3200 ◽  
Author(s):  
Jian Wu ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Tao Chen

Surface-enhanced fluorescence detection has large potential for detecting many chemical and biological trace analytes. This paper presents a novel method for preparing silver nanomaterials in microfluidic chip channels for the surface-enhanced fluorescence detection of fluorescent dye (SYBR Green I) molecules. Microfluidic chip channels were fabricated by a 248-nm excimer laser. Silver nanoparticles (Ag-NPs) were prepared inside the microfluidic chip channels by directly heating the silver precursor solution. The influence of different temperatures on the sizes of the silver nanoparticles was studied. Then, the surface-enhanced fluorescence technology based on the microfluidic system was used to detect the fluorescent dye molecules. As a result, the fluorescence signal of the fluorescent dye molecules was significantly enhanced by the silver nanoparticles. In addition, the effect of particle size on the fluorescence signal was studied. This simple and fast method is suitable for a fluorescent PCR (polymerase chain reaction) system and has good application prospects for detecting harmful microorganisms in a spacecraft.


2021 ◽  
Author(s):  
Yamin Lin ◽  
Mengmeng Zheng ◽  
Xin Zhao ◽  
Dan Liu ◽  
Jiamin Gao ◽  
...  

Herein, we proposed a simple one-pot sol-thermal strategy to prepare highly sensitive and reproducible SERS substrate. The silver-doped hydroxyapatite nanocomposite (HAp/Ag) could suppress the oxidation of the silver nanoparticles, which...


2020 ◽  
Author(s):  
Baptiste Auguié ◽  
Brendan Darby ◽  
Eric Le Ru

Enhanced interaction between light and molecules adsorbed on metallic nanoparticles is a cornerstone of plasmonics and surface-enhanced spectroscopies. Recent experimental access to the electronic absorption spectrum of dye molecules on silver colloids at low molecular coverage has revealed subtle changes in the spectral shape that may be attributed to a combination of factors, from a chemical modification of the molecule in contact with a metal surface to electromagnetic dye–dye and dye–metal interactions. Here we develop an original model to rigorously address the electromagnetic effects. The dye molecules are described as coupled anisotropic polarisable dipoles and their interaction with the core metal particle is described using a generalised Mie theory. The theory is readily amenable to numerical implementation and yields far-field optical cross-sections that can be compared to experimental results. We apply this model to specific adsorption geometries of practical interest to highlight the effect of molecular orientation on predicted spectral shifts and enhancement factors, as a function of surface coverage. These are compared to experimental results and reproduce the measured spectral changes as a function of concentration. These results have direct implications for the interpretation of surface selection rules and enhancement factors in surface-enhanced spectroscopies, and of orientation and coverage effects in molecular/plasmonic resonance coupling experiments.


2020 ◽  
Author(s):  
Baptiste Auguié ◽  
Brendan Darby ◽  
Eric Le Ru

Enhanced interaction between light and molecules adsorbed on metallic nanoparticles is a cornerstone of plasmonics and surface-enhanced spectroscopies. Recent experimental access to the electronic absorption spectrum of dye molecules on silver colloids at low molecular coverage has revealed subtle changes in the spectral shape that may be attributed to a combination of factors, from a chemical modification of the molecule in contact with a metal surface to electromagnetic dye–dye and dye–metal interactions. Here we develop an original model to rigorously address the electromagnetic effects. The dye molecules are described as coupled anisotropic polarisable dipoles and their interaction with the core metal particle is described using a generalised Mie theory. The theory is readily amenable to numerical implementation and yields far-field optical cross-sections that can be compared to experimental results. We apply this model to specific adsorption geometries of practical interest to highlight the effect of molecular orientation on predicted spectral shifts and enhancement factors, as a function of surface coverage. These are compared to experimental results and reproduce the measured spectral changes as a function of concentration. These results have direct implications for the interpretation of surface selection rules and enhancement factors in surface-enhanced spectroscopies, and of orientation and coverage effects in molecular/plasmonic resonance coupling experiments.


2021 ◽  
Author(s):  
Chhayly Tang

<p><b>The study of light scattering by particles has become fundamental and applied interests in the fields of chemistry, biology, and most importantly in physics. In this context, this thesis focuses on understanding the optical properties of dye layers adsorbed onto metallic nanoparticles (NP), which is essential for interpreting the results of plasmon-dye coupling experiments. To model such a system, Mie theory is often used to solve for the exact solution to Maxwell’s equations for spherical homogeneous and isotropic coated NP. The effects of the NP’s plasmon resonances on the optical properties of the adsorbed dye layer have been predicted using an effective medium model, where the dye-layer is treated as an isotropic layer with an effective dielectric function accounting for the dye resonance. However, this isotropic shell model is inadequate as it cannot account for the dye surface concentration and the anisotropy of the optical response of the dye layer.</b></p> <p>In this thesis, we introduce anisotropic effects within Mie theory and develop microscopic models to define effective dielectric functions which explicitly include the dye-concentration effect in the shell model. Combining anisotropic Mie theory with a concentration-dependent effective shell model allows us to form new theoretical tools to model the optical properties of adsorbed dye layers on metallic NPs of spherical shape. With this new refined effective medium model, we are then able to study shell models for elongated particles beyond the quasi-static approximation. This is implemented using the finite element method (FEM) to numerically solve Maxwell’s equations. The FEM implementation is then used to investigate how the NP’s plasmon resonance can be affected by the dye’s orientation and location on the NP’s surface. We show that the orientation and location of the dye molecules on the NP determine how strongly the plasmon resonance is shifted.</p> <p>The results of this work will improve our ability to accurately model the optical properties of anisotropic molecules adsorbed on metallic NPs. This is important in a number of applications including the development of localised surface plasmon resonance (LSPR) sensing and the design of plasmonic devices.</p>


2010 ◽  
Vol 654-656 ◽  
pp. 2402-2405 ◽  
Author(s):  
Chu Yang Chen ◽  
Xu Chuan Jiang ◽  
Shi Xian Xiong ◽  
Ai Bing Yu

Precious metallic nanoparticles have attracted considerable attention because of their unique properties (optical, electronic, and chemical properties) and potential applications in many areas such as optical probes, biochemical sensors, and surface enhanced Raman Spectrum. Despite many successes in synthesis of anisotropic nanoparticles (rods, plates), some limitations still exist in generating monodispersed silver nanoparticles. This study intends to elucidate the influence of crystalline seeds on the shape, size, and size distribution of nanoparticles through a seed-mediated method. The crystalline seeds can be modified by using different ways, such as heating treatment and oxidative etching. The shape and size of the generated particles will be characterized by TEM, and the particle formation and growth is tracked by UV-vis spectrometry. The findings would be useful for the shape-controlled synthesis of metal nanoparticles for desired functional properties.


Sign in / Sign up

Export Citation Format

Share Document