scholarly journals Robotic Spatial Printing For Designers

2021 ◽  
Author(s):  
◽  
Liam Gilbertson

<p>This research developed a fully-integrated robotic printing system, using new methods of additive manufacture (AM) that enables users to explore spatially printed structures with increased freedom of geometric complexity.  Current AM technologies, such as Fusion Deposition Modelling (FDM), can rapidly translate design ideations into solid forms by precisely depositing consecutive layers of material in coordination with the movements of a robotic platform. Using this method, solid objects are digitally deconstructed into linear toolpaths and physically reconstituted with thermoplastic extrusion equipment; the toolpath becomes the form.  Spatial printing, using methods such as those demonstrated in this research, offers a new way of building 3D forms. By harnessing the potential of FDM equipment and materials for generating self-supporting structures, the user can create complex free-standing structures unshackled from the layered constraints of typical additive manufacturing processes. Here, the user acts as an informed negotiator between digital form and physical manifestation where movement realises form.  A complete spatial printing system was built that harnesses the complexity of robotic movements and responds to the needs of printing materials through a feedback loop that draws from the results of experimentation. Bespoke printing equipment and computational processes strive to improve the craft qualities and printability of input materials with a specific focus on compatibility with co-extrusion biopolymer filaments developed by Scion. This thesis illustrates the development of a versatile spatial printing system and subsequent investigations into the craft qualities and freedom of complexity that this system offers to designers and architects.</p>

2021 ◽  
Author(s):  
◽  
Liam Gilbertson

<p>This research developed a fully-integrated robotic printing system, using new methods of additive manufacture (AM) that enables users to explore spatially printed structures with increased freedom of geometric complexity.  Current AM technologies, such as Fusion Deposition Modelling (FDM), can rapidly translate design ideations into solid forms by precisely depositing consecutive layers of material in coordination with the movements of a robotic platform. Using this method, solid objects are digitally deconstructed into linear toolpaths and physically reconstituted with thermoplastic extrusion equipment; the toolpath becomes the form.  Spatial printing, using methods such as those demonstrated in this research, offers a new way of building 3D forms. By harnessing the potential of FDM equipment and materials for generating self-supporting structures, the user can create complex free-standing structures unshackled from the layered constraints of typical additive manufacturing processes. Here, the user acts as an informed negotiator between digital form and physical manifestation where movement realises form.  A complete spatial printing system was built that harnesses the complexity of robotic movements and responds to the needs of printing materials through a feedback loop that draws from the results of experimentation. Bespoke printing equipment and computational processes strive to improve the craft qualities and printability of input materials with a specific focus on compatibility with co-extrusion biopolymer filaments developed by Scion. This thesis illustrates the development of a versatile spatial printing system and subsequent investigations into the craft qualities and freedom of complexity that this system offers to designers and architects.</p>


Author(s):  
Isabel P. S. Qamar ◽  
Richard S. Trask

Self-healing materials have emerged as an alternative solution to the repair of damage in fibre-reinforced composites. Recent developments have largely focused on a vascular approach, due to the ability to transport healing agents over long distances and continually replenish from an external source. However fracture of the vascular network is required to enable the healing agents to infiltrate the crack plane, ceasing its primary function in transporting fluid and preventing the repair of any further damage events. Here we present a novel approach to vascular self-healing through the development and integration of 3D printed, porous, thermoplastic networks into a thermoset matrix. This concept exploits the inherently low surface chemistry of thermoplastic materials, which results in adhesive failure between the thermoplastic network and thermoset matrix on arrival of a propagating crack, thus exposing the radial pores of the network and allowing the healing agents to flow into the damage site. We investigate the potential of two additive manufacturing techniques, fused deposition modeling (FDM) and stereolithography, to fabricate free-standing, self-healing networks. Furthermore, we assess the interaction of a crack with branched network structures under static indentation in order to establish the feasibility of additive manufacture for multi-dimensional 3D printed self-healing networks.


Author(s):  
Laxmi Poudel ◽  
Lucas Galvan Marques ◽  
Robert Austin Williams ◽  
Zachary Hyden ◽  
Pablo Guerra ◽  
...  

Abstract Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple mobile 3D printing robots work together cooperatively to print the desired part. At the core of C3DP lies the chunk-based printing strategy. This strategy splits the desired part into smaller chunks, and then the chunks are assigned and scheduled to be printed by individual printing robots. In our previous work, we presented various hardware and software components of C3DP, such as mobile 3D printers, chunk-based slicing, scheduling, and simulation. In this study, we present a fully integrated and functional C3DP platform with all necessary components, including chunker, slicer, scheduler, printing robots, build floor, and outline how they work in unison from a system-level perspective. To realize C3DP, new developments of both hardware and software are presented, including new chunking approaches, scalable scheduler for multiple robots, SCARA-based printing robots, a mobile platform for transporting printing robots, modular floor tiles, and a charging station for the mobile platform. Finally, we demonstrate the capability of the system using two case studies. In these demonstrations, a CAD model of a part is fed to the chunker, divided into smaller chunks, passed to the scheduler, and assigned and scheduled to be printed by the scheduler with a given number of robots. The slicer generates G-code for each of the chunks and combines G-code into one file for each robot. The simulator then uses the G-code generated by the slicer to generate animations for visualization purposes.


2008 ◽  
Vol 54 ◽  
pp. 401-404 ◽  
Author(s):  
Heike Bartsch de Torres ◽  
Christian Rensch ◽  
Torsten Thelemann ◽  
J. Müller ◽  
M. Hoffmann

A thick film anemometer for in situ control of the flow rate in fluidic systems was designed, manufactured and characterized. The sensor is integrated in a retention modulus consisting of Low Temperature Cofired Ceramics (LTCC). These materials allow the cost-effective realisation of fluidic microsystems with integrated electronics. The challenge of the work is to design an anemometer under the exclusive use of thick film technologies. The necessity to trim resistors causes the external use of relevant pastes. Therefore, the use inside of a closed fluidic system requires the leak of process gases and, at the same time, a maximal heat-insulating of the sensor element from the substrate. Free-standing elements necessitate the control of stress due to shrinking mismatch, TCE mismatch, density gradients and deformation during the lamination. In the presented solution, embossed flue channels prevent blow forming on a free-standing bridge. The anemometer has a linear sensor characteristic for flow rates up to 0.1 ml/min. The layout guarantees that the fluid gets only in contact with the basic ceramic material, which is compatible with a wide range of biological substances. Therefore the sensor is applicable in contact with cell fluids or PCRreagents.


2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>


Author(s):  
Serhii Sapunov ◽  
Aleksei Senchenko ◽  
Oleh Sereda

The aim of this paper is to study the representation of deterministic graphs (D-graphs) by sets of words over the vertex labels alphabet and to find metric properties of this representation. Vertex-labeled graphs are widely used in various computational processes modeling in programming, robotics, model checking, etc. In such models graphs playing the role of an information environment of single or several mobile agents. Walks of agents on a graph determines the sequence of vertices labels or words in the alphabet of labels. A vertex-labeled graph is said to be D-graph if all vertices in the neighborhood of every its vertex have different labels. For D-graphs in case when the graph as a whole and the initial vertex (i.e. the vertex from which the agent started walking) are known there exists the one-to-one correspondence between the sequence of vertices visited by the agent and the trajectory of its walks on the graph. In case when the D-graph is not known as a whole, agent walks on it can be arranged in such way that an observer obtains information about the structure of the graph sufficient to solve the problems of graph recognizing, finding optimal path between vertices, comparison between current graph and etalon graph etc. This paper specifies the representation of D-graphs by the defining pair of sets of words (the first describes cycles of the graph and the second -- all its vertices of degree 1). This representation is an analogue of the system of defining relations for everywhere defined automata. The structure of the so-called canonical defining pair, which is minimal in terms of the number of words, is also considered. An algorithm for building such pair is developed and described in detail. For D-graphs with a given number of vertices and edges, the exact number of words in the first component of its canonical defining pair and the minimum and maximum attainable bounds for the the number of words in the second component of this pair are obtained. This representation allows us to use new methods and algorithms to solve the problems of analyzing vertex-labeled graphs.


2018 ◽  
Vol 15 (15) ◽  
pp. 20180611-20180611 ◽  
Author(s):  
Chengtuo Liang ◽  
Liping Liang ◽  
Zhijun Wang

2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>


Author(s):  
S. Basu ◽  
D. F. Parsons

We are approaching the invasiveness of cancer cells from the studies of their wet surface morphology which should distinguish them from their normal counterparts. In this report attempts have been made to provide physical basis and background work to a wet replication method with a differentially pumped hydration chamber (Fig. 1) (1,2), to apply this knowledge for obtaining replica of some specimens of known features (e.g. polystyrene latex) and finally to realize more specific problems and to improvize new methods and instrumentation for their rectification. In principle, the evaporant molecules penetrate through a pair of apertures (250, 350μ), through water vapors and is, then, deposited on the specimen. An intermediate chamber between the apertures is pumped independently of the high vacuum system. The size of the apertures is sufficiently small so that full saturated water vapor pressure is maintained near the specimen.


Sign in / Sign up

Export Citation Format

Share Document