BIM-Based Quality Control for Safety Issues in the Design and Construction Phases

Author(s):  
Seunghwa Park ◽  
Inhan Kim

Today’s buildings are getting larger and more complex. As a result, the traditional method of manually checking the design of a building is no longer efficient since such a process is time-consuming and laborious. It is becoming increasingly important to establish and automate processes for checking the quality of buildings. By automatically checking whether buildings satisfy requirements, Building Information Modeling (BIM) allows for rapid decision-making and evaluation. In this context, the work presented here focuses on resolving building safety issues via a proposed BIM-based quality checking process. Through the use case studies, the efficiency and usability of the devised strategy is evaluated. This research can be beneficial in promoting the efficient use of BIM-based communication and collaboration among the project party concerned for improving safety management. In addition, the work presented here has the potential to expand research efforts in BIM-based quality checking processes.

Bauingenieur ◽  
2020 ◽  
Vol 95 (10) ◽  
pp. 379-388
Author(s):  
Christian Schranz ◽  
Alexander Gerger ◽  
Harald Urban

Zusammenfassung Die Bauwirtschaft gehört bis dato zu den am wenigsten von der Digitalisierung erfassten Wirtschaftszweigen. Der vermehrte Einsatz von Building Information Modeling (BIM) in Planungsbüros beschleunigt nun die Digitalisierung des Bauwesens. Dies ermöglicht den vermehrten Einsatz weiterer digitaler Tools im Bauprozess, zum Beispiel Augmented Reality (AR). Neue Tools bieten die Chance, die vorhandenen Prozesse neu zu überdenken und auf Innovations- und Effizienzpotenzial zu untersuchen. Die Autoren sehen für die Technologie AR großes Potenzial im Bauprozess. Im Forschungsprojekt AR-AQ-Bau führten sie daher eine Anwendungs- und Anforderungsanalyse für AR durch. In diesem Artikel werden einige derzeitige und mögliche Anwendungen von AR im Bauwesen sowie deren Anforderungen an AR-Hard- und Software (z. B. durch die Besonderheiten der Baustelle) dargestellt und ein Ausblick in die Zukunft gegeben. Der Anwendungsbereich von AR ist äußerst vielfältig. Einerseits kann BIM dadurch leichter auf die Baustelle übertragen und können Abnahmen und Qualitätskontrollen durchgeführt werden. Andererseits stellen ein Remote-Expert-System, Schulungen und die Unterstützung im Behördenverfahren weitere Einsatzmöglichkeiten dar.


2020 ◽  
Vol 12 (15) ◽  
pp. 2492
Author(s):  
Yi Tan ◽  
Silin Li ◽  
Qian Wang

Traditional quality inspection of prefabricated components is labor intensive, time-consuming, and error prone. This study developed an automated geometric quality inspection technique for prefabricated housing units using building information modeling (BIM) and light detection and ranging (LiDAR). The proposed technique collects the 3D laser scanned data of the prefabricated unit using a LiDAR which contains accurate as-built surface geometries of the prefabricated unit. On the other hand, the BIM model of the prefabricated unit contains the as-designed geometries of the unit. The scanned data and BIM model are then automatically processed to inspect the geometric quality of individual elements of the prefabricated units including both structural and mechanical elements, as well as electrical and plumbing (MEP) elements. To validate the proposed technique, experiments were conducted on two prefabricated bathroom units (PBUs). The inspection results showed that the proposed technique can provide accurate quality inspection results with 0.7 mm and 0.9 mm accuracy for structural and MEP elements, respectively. In addition, the experiments also showed that the proposed technique greatly improves the inspection efficiency regarding time and labor.


2014 ◽  
Vol 584-586 ◽  
pp. 1881-1884
Author(s):  
Xuan Liu ◽  
Hai Xie

Building Information Modeling (BIM) is a digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life-cycle; defined as existing from earliest conception to demolition. Building Information Modeling (BIM) is a process involving the generation and management of digital representations of physical and functional characteristics of places. BIM are files (often but not always in proprietary formats and containing proprietary data) which can be exchanged or networked to support decision-making about a place. Current BIM software is used by individuals, businesses and government authorities who plan, design, construct, operate and maintain diverse physical infrastructures, from water, wastewater, electricity, gas, refuse and communication utilities to roads, bridges and ports, from houses, apartments, schools and shops to offices, factories, warehouses and etc.


2021 ◽  
Vol 283 ◽  
pp. 01043
Author(s):  
Cong Peng ◽  
Xing Li

Recent years, China is focus on promoting prefabricated buildings in the field of construction and increasing the assembly rate of various buildings throughout the country, and it should pay more attention to the quality issues of prefabricated construction. BIM technology is a emerging science and technology, it has the advantages to control the quality of the construction, and play the critical role in the production and construction of prefabricated buildings. The application ideas of BIM technology and put forward, which provide a reference for improving the quality of prefabricated buildings.


2017 ◽  
Vol 6 (2) ◽  
pp. 14-35 ◽  
Author(s):  
Mohamed Marzouk ◽  
Eslam Mohammed Abdelkader

The construction industry is regarded as a major contributor to environmental emissions, due to extensive usage of resources and the waste products produced. This article presents a building information modeling (BIM)-based model that is capable of measuring six types of emissions for different activities of construction projects. The paper investigates eight multi-criteria decision-making (MCDM) techniques for ranking alternatives based on project time; project life cycle cost; project environmental impact; and primary energy consumed by different activities. Three group decision- making techniques are performed to provide consensus and final ranking of alternatives. The Monte Carlo simulation is implemented in order to account for the discrepancy in the calculation of greenhouse gases produced from buildings. Also, a case study of academic buildings is introduced in order to demonstrate the practical features of the proposed model.


2020 ◽  
Vol 12 (9) ◽  
pp. 3748 ◽  
Author(s):  
Anita Naneva ◽  
Marcella Bonanomi ◽  
Alexander Hollberg ◽  
Guillaume Habert ◽  
Daniel Hall

The building sector has a significant potential to reduce the material resource demand needed for construction and therefore, greenhouse gas (GHG) emissions. Digitalization can help to make use of this potential and improve sustainability throughout the entire building’s life cycle. One way to address this potential is through the integration of Life Cycle Assessment (LCA) into the building process by employing Building Information Modeling (BIM). BIM can reduce the effort needed to carry out an LCA, and therefore, facilitate the integration into the building process. A review of current industry practice and scientific literature shows that companies are lacking the incentive to apply LCA. If applied, there are two main approaches. Either the LCA is performed in a simplified way at the beginning of the building process using imprecise techniques, or it is done at the very end when all the needed information is available, but it is too late for decision-making. One reason for this is the lack of methods, workflows and tools to implement BIM-LCA integration over the whole building development. Therefore, the main objective of this study is to develop an integrated BIM-LCA method for the entire building process by relating it to an established workflow. To avoid an additional effort for practitioners, an existing structure for cost estimation in the Swiss context is used. The established method is implemented in a tool and used in a case study in Switzerland to test the approach. The results of this study show that LCA can be performed continuously in each building phase over the entire building process using existing Building Information Modeling (BIM) techniques for cost estimation. The main benefit of this approach is that it simplifies the application of LCA in the building process and therefore gives incentives for companies to apply it. Moreover, the re-work caused by the need for re-entering data and the usage of many different software tools that characterize most of the current LCA practices is minimized. Furthermore, decision-making, both at the element and building levels, is supported.


2016 ◽  
Vol 153 ◽  
pp. 519-526 ◽  
Author(s):  
Paweł Nowak ◽  
Mariola Książek ◽  
Marcin Draps ◽  
Jacek Zawistowski

Sign in / Sign up

Export Citation Format

Share Document