scholarly journals Analisis Sistem Pengelolaan Limbah B3 Di Industri Tekstil Kabupaten Bandung

2021 ◽  
Vol 5 (1) ◽  
pp. 15-26
Author(s):  
Eka Wardhani ◽  
Dea Salsabila

ABSTRAKPenelitian ini bertujuan untuk mengetahui pengelolaan LB3 yang telah dilakukan di indsutri tekstil. Metode penelitian menggunakan metode perbandingan antara kondisi di lapangan dengan peraturan yang berlaku. Berdasarkan hasil evaluasi mengenai pengelolaan LB3 yang dilakukan oleh PT X dapat disimpulkan beberapa hal yaitu sumber LB3 berasal dari proses produksi, lumpur IPAL, boiler, labolatorium, pemeliharaan mesin, dan klinik. Jenis LB3 yang dihasilkan berasal dari sumber spesifik umum yaitu lumpur IPAL dan limbah medis, sumber spesifik khusus yaitu hanya fly ash dan sumber tidak spesifik yang meliputi lampu TL, drum bekas LB3, oli bekas dan reagen. Karakteristik LB3 terdiri dari beracun, mudah menyala, korosif dan infeksius. PT X telah melakukan pengelolaan LB3 yang meliputi aspek pengemasan dan pewadahan, pengumpulan, penyimpanan, pengangkutan dokumen pengelolaan LB3, dan pelabelan LB3. Untuk kegiatan pengangkutan PT X bekerja sama dengan pihak ketiga diantaranya adalah PT Hijau Lestari, PT PPLI, PT Khalda, dan WGI. Berdasarkan hasil analisis pengelolaan LB3 di perusahaan ini termasuk kategori baik. Upaya pengelolaan LB3 yang harus ditingkatkan yaitu pada proses pelekatan simbol dan label, pengemasan, dan penyimpanan LB3.Kata Kunci: Kabupaten Bandung, Industri Tekstil, Limbah B3,ABSTRACTThis study aims to determine the management of LB3 that has been carried out in the textile industry. The research method uses a comparison between conditions in the field and applicable regulations Based on the evaluation results on the management of hazardous materials carried out by PT X, it can be concluded several things, namely the source of hazardous materials originating from the production process, sludge from the wastewater treatment plant, boilers, laboratory, engine maintenance, and clinics. The types of hazardous materials produced come from general specific sources such are sludge from the wastewater treatment plant and medical waste, specific sources which are fly ash and non-specific sources which include lamps, drums used in hazardous materials, used oil and reagents. The characteristics of hazardous materials consist of toxic, flammable, corrosive, and infectious. PT X has managed the management of hazardous materials which includes aspects of packaging, storage, collection, storage, transportation of documents on the management of hazardous materials, and labeling of hazardous materials. For transportation activities, PT X cooperates with third parties including PT Hijau Lestari, PT PPLI, PT Khalda, and WGI. Based on the analysis the achievement of the management of dangerous substances in this company including the good category. Efforts to manage toxic and hazardous materials must be improved in the process of sticking symbols and labels, packaging, and storing toxic and hazardous materials.Keywords: Bandung Regency, Testile iIndustry, hazardous waste materials

1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


2021 ◽  
Vol 5 (2) ◽  
pp. 69-78
Author(s):  
Siti Romadhonah ◽  
Chusnul Arif

PT. Indonesia Power UPJP Priok is a power generation industry that manages wastewater by a wastewater treatment plant (WWTP). Analysis of wastewater quality and removal efficiency (RE) needs to be conducted to fulfill the quality standards. This study aimed to analyze water quality and removal efficiency of WWTP. The materials used in the study was wastewater laboratory test results for 5 years. The results showed that the pH, TSS, oil and fat contents, Cl2, Cr, Cu, Fe, Zn, and phosphate in the inlet decreased after the processing at WWTP. The waste output at WWTP had fulfilled the quality standard. The highest RE unit value of WWTP for TSS, oil and fat, Cl2, Cr, Cu, Fe, Zn, and phosphate were 21.3%, 2.4%, 12.5 %, 15.6%, 7.8%, 25.7%, 5.7%, and 46.2%. WWTP RE values between years do not differ significantly. However, RE values in several years showed that WWTP units were less efficient which were showed by low RE values. WWTP units should be maintained every two years.


Sign in / Sign up

Export Citation Format

Share Document