scholarly journals Evolução Paleotopográfica da Margem Continental Brasileira durante o Fanerozoico: Evidências a partir da Termocronologia por Traços de Fissão em Apatitas (Paleotopographic Evolution of the Brazilian Continental Margin during the Phanerozoic: Evidence from Apatite Fission Track Thermochronology)

2019 ◽  
Vol 12 (4) ◽  
pp. 1670
Author(s):  
Andrea Ritter Jelinek

Este trabalho explora banco de dados traços de fissão em apatitas com o objetivo de desenvolver uma visão sinóptica de padrões de denudação através do espaço-tempo na margem continental brasileira. A resposta geomorfológica aos processos de rifteamento e ruptura continental variou ao longo da margem continental brasileira. No processo de construção do relevo desta margem foram registrados três episódios de resfriamento acelerado, que são vinculados a processos denudacionais: Cretáceo Inferior, Cretáceo Superior e Paleógeno-Neógeno. As margens continentais sudeste e leste apresentam uma morfologia de margem continental passiva característica, com as bacias sedimentares offshore separadas da região continental elevada, composta pelas Serra do Mar e da Serra da Mantiqueira, por uma planície costeira relativamente estreita. As idades de soerguimento são mais jovens do que a idade do rifteamento. O resfriamento do Paleógeno-Neógeno é resultado do aumento nas taxas de denudação, que são relacionados à formação e reativação de blocos de falha de alto ângulo que se moveram em resposta às tensões intraplaca. A região do Arco de Ponta Grossa apresenta o relevo mais jovem de toda a margem, sendo um alto topográfico associado ao magmatismo Paraná-Etendeka e limitado por zonas de cisalhamento. Duas porções da margem apresentam relevo diferenciado, com episódios de denudação pré-rifte. A Depressão Sertaneja, na margem nordeste, típica região semi-árida do nordeste caracterizada como um pediplano, com vales estreitos e vertentes dissecadas, com resfriamento do Permiano-Jurássico Inferior; e a margem sul, local com topografia baixa, e soerguimento lento e contínuo do Paleozoico.A B S T R A C TThis study explores apatite fission track database with the objective of developing a synoptic view of denudation patterns across space and time in the Brazilian continental margin. The geomorphological response to the continental rift and rupture processes varied along the Brazilian continental margin. In the construction of the relief of this margin were recorded three episodes of accelerated cooling, which are linked to denudational processes: Lower Cretaceous, Upper Cretaceous and Paleogene-Neogene episodes. The southeast and eastern continental margin presents a characteristic passive continental margin morphology, with the offshore sedimentary basins separated from the elevated continental region, Serra do Mar and Serra da Mantiqueira, for a relatively narrow coastal plain. The uplifting ages are younger than the rift age. Accelerated cooling during Paleogene-Neogene is a result of increased denudation rates, which are related to the formation and reactivation of high angle fault blocks that have moved in response to intraplate stresses. The region of the Ponta Grossa Arch presents the youngest relief of the entire continental margin. It is a high topographic associated with Paraná-Etendeka magmatism and limited by shear zones. There are two parts of the continental margin with differentiated relief, which present episodes of pre-rift denudation. The Sertaneja Depression, in the northeast margin, a typical semi-arid northeast region characterized as a pediplane, with narrow valleys and dissected slopes, where occurs a Permian-Lower Jurassic cooling episode; and the south continental margin, where the topography is relatively, registering a slow and continuous uplift during the Paleozoic. Keywords: Paleotopography, rift continental margin, apatite fission tracks

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


2008 ◽  
Vol 43 (2-6) ◽  
pp. 1175
Author(s):  
J. De Grave ◽  
P. Van den haute ◽  
M.M. Buslov ◽  
B. Dehandschutter ◽  
S. Glorie

2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


2005 ◽  
pp. 527-566 ◽  
Author(s):  
Barry P. Kohn ◽  
Andrew J.W. Gleadow ◽  
Roderick W. Brown ◽  
Kerry Gallagher ◽  
Matevz Lorencak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document