scholarly journals Variabilidade da Dengue e do Clima em Porto Alegre/RS de 2012 a 2017

2019 ◽  
Vol 12 (6) ◽  
pp. 2080
Author(s):  
Erika Collischonn ◽  
Bianca Marques Maio ◽  
Ricardo Brandolt

O El Niño/Oscilação Sul (ENOS) é uma oscilação conjunta oceano-atmosfera, que altera a Temperatura da Superfície do Mar (TSM), a pressão, o vento e a convecção tropical, principalmente no Oceano Pacífico, porém com reflexos na circulação atmosférica e no padrão de distribuição da precipitação em outras áreas do planeta, incluindo o sul do Brasil, conforme já comprovado por vários autores. Essa alteração de padrões pode aumentar o número de pessoas expostas a doenças, como a dengue, aumentando a probabilidade de surtos ou epidemias. Neste trabalho, o recorte temporal escolhido, de 2012 a 2017, abrange os dois anos em que mais casos de dengue autóctone ocorreram em Porto Alegre (2013 e 2016). Para o período, analisaram-se variabilidades a partir dos seguintes dados: Índice Niño 3.4 (NOAA); médias e totais mensais de elementos meteorológicos e as normais climatológicas 1981-2010 de Porto Alegre (WMO 83967- INMET); casos confirmados de dengue por semana epidemiológica e ano (SINAN-RS); dias com presença de jatos de baixos níveis (JBN) sobre Porto Alegre (Projeto Rios Voadores e INPE/CPTEC). A partir da organização destes dados, foi constatada uma correspondência entre o El Niño muito forte ocorrido em 2016, a presença quase constante dos JBN sobre Porto Alegre, precipitação bem superior à normal e o maior número de casos de dengue autóctone já registrado até então. Discute-se também as diferenças e semelhanças deste ano com o de 2013, que foi o segundo ano em registros de dengue autóctone.  Variability of Climate and Dengue Fever Cases in Porto Alegre/RS from 2012 to 2017 A B S T R A C TThe El Niño / Southern Oscillation (ENSO) The El Niño-Southern Oscillation (ENSO) cycle causes ripples through the global climate, changing air currents and rainfall patterns, The effect on the climate of southern Brazil was evidenced by several authors. The shifts in Niño years can increase the number of people exposed to a disease, such as dengue, increasing the likelihood of an outbreak. In this work, we analyzed a period of time that covers the two years in which more cases of autochthonous dengue fever occurred in Porto Alegre (2013 and 2016). For this period, variability was analyzed from the following data: Niño 3.4 (NOAA), monthly mean and cumulative meteorological data and climatological normal 1981/2010 of Porto Alegre (WMO 83967- INMET); confirmed cases of dengue fever per epidemiological week and per year (SINAN-RS); days with presence of low level jets (JBN) over Porto Alegre (INPE/CPTEC). The organization of these data showed correspondence between the very strong El Niño occurred in 2016, the almost constant presence of the JBN over Porto Alegre, the most intense and frequent precipitation, and the highest number of autochthonous dengue cases ever recorded. We also discuss the differences and similarities of this year with that of 2013, which was the second year in autochthonous dengue fever records.Keywords: El Niño, Low Lever Jet, precipitation, temperature, wind, dengue fever.

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2008 ◽  
Vol 136 (7) ◽  
pp. 2523-2542 ◽  
Author(s):  
Mark LaJoie ◽  
Arlene Laing

Abstract Cloud-to-ground (CG) lightning flashes from the National Lightning Detection Network are analyzed to determine if the El Niño–Southern Oscillation (ENSO) cycle influences lighting activity along the Gulf Coast region. First, an updated climatology of lightning was developed for the region. Flash density maps are constructed from an 8-yr dataset (1995–2002) and compared with past lightning climatologies. Second, lightning variability is compared with the phases of ENSO. Winter lightning distributions are compared with one published study of ENSO and lightning days in the Southeast. Flash density patterns are, overall, consistent with past U.S. lightning climatology. However, the peak flash density for the annual mean was less than observed in previous climatologies, which could be due to the disproportionately large percentage of cool ENSO periods compared to previous lightning climatologies. The highest annual lightning counts were observed in 1997, which consisted of mostly warm ENSO seasons; the 1997–98 El Niño was one of the strongest on record. The lowest lightning counts were observed in 2000, which had mostly cool or neutral phases of ENSO including the lowest Niño-3.4 anomaly of the study period. Analysis of winter season lightning flash densities substantiated the role of the ENSO cycle in winter season lightning fluctuations. Winter lightning activity increased dramatically during the 1997–98 El Niño. The lowest winter flash densities are associated with cool ENSO phases. Although 8 yr is inadequate to establish a long-term pattern, results indicate that ENSO influences lightning and that further study is warranted. As more years of lightning data are acquired, a more complete climatology can be developed.


Science ◽  
2013 ◽  
Vol 339 (6115) ◽  
pp. 67-70 ◽  
Author(s):  
Kim M. Cobb ◽  
Niko Westphal ◽  
Hussein R. Sayani ◽  
Jordan T. Watson ◽  
Emanuele Di Lorenzo ◽  
...  

The El Niño–Southern Oscillation (ENSO) drives large changes in global climate patterns from year to year, yet its sensitivity to continued anthropogenic greenhouse forcing is uncertain. We analyzed fossil coral reconstructions of ENSO spanning the past 7000 years from the Northern Line Islands, located in the center of action for ENSO. The corals document highly variable ENSO activity, with no evidence for a systematic trend in ENSO variance, which is contrary to some models that exhibit a response to insolation forcing over this same period. Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.


2007 ◽  
Vol 67 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Chris S.M. Turney ◽  
Jonathan G. Palmer

AbstractSince the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño–Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.


2021 ◽  
Vol 6 (1) ◽  
pp. 289-297
Author(s):  
Ricky Anak Kemarau ◽  
Oliver Valentine Eboy

The El Niño–Southern Oscillation (ENSO) event is a climate event that has an impact on the world climate. The effects of ENSO are often associated with prolonged droughts and floods since 1980 following global climate change. In addition to causing flooding and drought. Indirectly, the occurrence of ENSO causes health problems, environmental destruction, affecting economic activities such as agriculture and fisheries. Many studies on ENSO have been conducted. However, there is still a lack of research on the effect of ENSO on temperature in local knowledge areas, especially urban areas because the urban environment especially building materials that can absorb and release heat. In addition, previous studies have focused on large-scale areas. Beside that there still gap to understand and increase knowledge about the effect of ENSO on local temperatures, especially in urban areas. This study uses meteorological data and Oceanic Nino Index (ONI) from 1988 to 2019. This study found that the occurrence of ENSO has an effect on the value of daily temperature but differs based on the value of the ONI index. In addition, this study uses linear regression in predicting the effect of ENSO on temperature. The results of this study are useful to those responsible for understanding the impact of ENSO on temperature in urban areas to provide infrastructure in reducing the impact of ENSO as well as adjustment measures during the occurrence of ENSO.


Sign in / Sign up

Export Citation Format

Share Document