Highly Variable El Niño–Southern Oscillation Throughout the Holocene

Science ◽  
2013 ◽  
Vol 339 (6115) ◽  
pp. 67-70 ◽  
Author(s):  
Kim M. Cobb ◽  
Niko Westphal ◽  
Hussein R. Sayani ◽  
Jordan T. Watson ◽  
Emanuele Di Lorenzo ◽  
...  

The El Niño–Southern Oscillation (ENSO) drives large changes in global climate patterns from year to year, yet its sensitivity to continued anthropogenic greenhouse forcing is uncertain. We analyzed fossil coral reconstructions of ENSO spanning the past 7000 years from the Northern Line Islands, located in the center of action for ENSO. The corals document highly variable ENSO activity, with no evidence for a systematic trend in ENSO variance, which is contrary to some models that exhibit a response to insolation forcing over this same period. Twentieth-century ENSO variance is significantly higher than average fossil coral ENSO variance but is not unprecedented. Our results suggest that forced changes in ENSO, whether natural or anthropogenic, may be difficult to detect against a background of large internal variability.

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2007 ◽  
Vol 67 (1) ◽  
pp. 174-180 ◽  
Author(s):  
Chris S.M. Turney ◽  
Jonathan G. Palmer

AbstractSince the 1970s it has been recognised that Southern Hemisphere samples have a lower radiocarbon content than contemporaneous material in the Northern Hemisphere. This interhemispheric radiocarbon offset has traditionally been considered to be the result of a greater surface area in the southern ocean and high-latitude deepwater formation. This is despite the fact that the El Niño–Southern Oscillation (ENSO) is known to play a significant role in controlling the interannual variability of atmospheric carbon dioxide by changing the flux of ‘old’ CO2 from the tropical Pacific. Here we demonstrate that over the past millennium, the Southern Hemisphere radiocarbon offset is characterised by a pervasive 80-yr cycle with a step shift in mean values coinciding with the transition from the Medieval Warm Period to the Little Ice Age. The observed changes suggest an ENSO-like role in influencing the interhemispheric radiocarbon difference, most probably modulated by the Interdecadal Pacific Oscillation, and supports a tropical role in forcing centennial-scale global climate change.


2019 ◽  
Vol 32 (15) ◽  
pp. 4661-4680 ◽  
Author(s):  
Eleanor A. Middlemas ◽  
Amy C. Clement ◽  
Brian Medeiros ◽  
Ben Kirtman

Abstract Cloud radiative feedbacks are disabled via “cloud-locking” in the Community Earth System Model, version 1.2 (CESM1.2), to result in a shift in El Niño–Southern Oscillation (ENSO) periodicity from 2–7 years to decadal time scales. We hypothesize that cloud radiative feedbacks may impact the periodicity in three ways: by 1) modulating heat flux locally into the equatorial Pacific subsurface through negative shortwave cloud feedback on sea surface temperature anomalies (SSTA), 2) damping the persistence of subtropical southeast Pacific SSTA such that the South Pacific meridional mode impacts the duration of ENSO events, or 3) controlling the meridional width of off-equatorial westerly winds, which impacts the periodicity of ENSO by initiating longer Rossby waves. The result of cloud-locking in CESM1.2 contrasts that of another study, which found that cloud-locking in a different global climate model led to decreased ENSO magnitude across all time scales due to a lack of positive longwave feedback on the anomalous Walker circulation. CESM1.2 contains this positive longwave feedback on the anomalous Walker circulation, but either its influence on the surface is decoupled from ocean dynamics or the feedback is only active on interannual time scales. The roles of cloud radiative feedbacks in ENSO in other global climate models are additionally considered. In particular, it is shown that one cannot predict the role of cloud radiative feedbacks in ENSO through a multimodel diagnostic analysis. Instead, they must be directly altered.


2019 ◽  
Vol 12 (6) ◽  
pp. 2080
Author(s):  
Erika Collischonn ◽  
Bianca Marques Maio ◽  
Ricardo Brandolt

O El Niño/Oscilação Sul (ENOS) é uma oscilação conjunta oceano-atmosfera, que altera a Temperatura da Superfície do Mar (TSM), a pressão, o vento e a convecção tropical, principalmente no Oceano Pacífico, porém com reflexos na circulação atmosférica e no padrão de distribuição da precipitação em outras áreas do planeta, incluindo o sul do Brasil, conforme já comprovado por vários autores. Essa alteração de padrões pode aumentar o número de pessoas expostas a doenças, como a dengue, aumentando a probabilidade de surtos ou epidemias. Neste trabalho, o recorte temporal escolhido, de 2012 a 2017, abrange os dois anos em que mais casos de dengue autóctone ocorreram em Porto Alegre (2013 e 2016). Para o período, analisaram-se variabilidades a partir dos seguintes dados: Índice Niño 3.4 (NOAA); médias e totais mensais de elementos meteorológicos e as normais climatológicas 1981-2010 de Porto Alegre (WMO 83967- INMET); casos confirmados de dengue por semana epidemiológica e ano (SINAN-RS); dias com presença de jatos de baixos níveis (JBN) sobre Porto Alegre (Projeto Rios Voadores e INPE/CPTEC). A partir da organização destes dados, foi constatada uma correspondência entre o El Niño muito forte ocorrido em 2016, a presença quase constante dos JBN sobre Porto Alegre, precipitação bem superior à normal e o maior número de casos de dengue autóctone já registrado até então. Discute-se também as diferenças e semelhanças deste ano com o de 2013, que foi o segundo ano em registros de dengue autóctone.  Variability of Climate and Dengue Fever Cases in Porto Alegre/RS from 2012 to 2017 A B S T R A C TThe El Niño / Southern Oscillation (ENSO) The El Niño-Southern Oscillation (ENSO) cycle causes ripples through the global climate, changing air currents and rainfall patterns, The effect on the climate of southern Brazil was evidenced by several authors. The shifts in Niño years can increase the number of people exposed to a disease, such as dengue, increasing the likelihood of an outbreak. In this work, we analyzed a period of time that covers the two years in which more cases of autochthonous dengue fever occurred in Porto Alegre (2013 and 2016). For this period, variability was analyzed from the following data: Niño 3.4 (NOAA), monthly mean and cumulative meteorological data and climatological normal 1981/2010 of Porto Alegre (WMO 83967- INMET); confirmed cases of dengue fever per epidemiological week and per year (SINAN-RS); days with presence of low level jets (JBN) over Porto Alegre (INPE/CPTEC). The organization of these data showed correspondence between the very strong El Niño occurred in 2016, the almost constant presence of the JBN over Porto Alegre, the most intense and frequent precipitation, and the highest number of autochthonous dengue cases ever recorded. We also discuss the differences and similarities of this year with that of 2013, which was the second year in autochthonous dengue fever records.Keywords: El Niño, Low Lever Jet, precipitation, temperature, wind, dengue fever.


2017 ◽  
Author(s):  
Tim Kittel ◽  
Catrin Ciemer ◽  
Nastaran Lotfi ◽  
Thomas Peron ◽  
Francisco Rodrigues ◽  
...  

Abstract. Recent work has provided ample evidence that global climate dynamics at time-scales between multiple weeks and several years can be severely affected by the episodic occurrence of both, internal (climatic) and external (non-climatic) perturbations. Here, we aim to improve our understanding on how regional to local disruptions of the “normal” state of the global surface air temperature field affect the corresponding global teleconnectivity structure. Specifically, we present an approach to quantify teleconnectivity based on different characteristics of functional climate network analysis. Subsequently, we apply this framework to study the impacts of different phases of the El Niño–Southern Oscillation (ENSO) as well as the three largest volcanic eruptions since the mid 20th century on the dominating spatio-temporal co-variability patterns of daily surface air temperatures. Our results confirm the existence of global effects of ENSO which result in episodic breakdowns of the hierarchical organization of the global temperature field. This is associated with the emergence of strong teleconnections. At more regional scales, similar effects are found after major volcanic eruptions. Taken together, the resulting time-dependent patterns of network connectivity allow a tracing of the spatial extents of the dominating effects of both types of climate disruptions. We discuss possible links between these observations and general aspects of atmospheric circulation.


Author(s):  
Bernd Krauskopf ◽  
Jan Sieber

Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO.


2019 ◽  
Vol 100 (3) ◽  
pp. 403-420 ◽  
Author(s):  
Agus Santoso ◽  
Harry Hendon ◽  
Andrew Watkins ◽  
Scott Power ◽  
Dietmar Dommenget ◽  
...  

AbstractEl Niño and La Niña, the warm and cold phases of El Niño–Southern Oscillation (ENSO), cause significant year-to-year disruptions in global climate, including in the atmosphere, oceans, and cryosphere. Australia is one of the countries where its climate, including droughts and flooding rains, is highly sensitive to the temporal and spatial variations of ENSO. The dramatic impacts of ENSO on the environment, society, health, and economies worldwide make the application of reliable ENSO predictions a powerful way to manage risks and resources. An improved understanding of ENSO dynamics in a changing climate has the potential to lead to more accurate and reliable ENSO predictions by facilitating improved forecast systems. This motivated an Australian national workshop on ENSO dynamics and prediction that was held in Sydney, Australia, in November 2017. This workshop followed the aftermath of the 2015/16 extreme El Niño, which exhibited different characteristics to previous extreme El Niños and whose early evolution since 2014 was challenging to predict. This essay summarizes the collective workshop perspective on recent progress and challenges in understanding ENSO dynamics and predictability and improving forecast systems. While this essay discusses key issues from an Australian perspective, many of the same issues are important for other ENSO-affected countries and for the international ENSO research community.


2018 ◽  
Vol 5 (6) ◽  
pp. 840-857 ◽  
Author(s):  
Song Yang ◽  
Zhenning Li ◽  
Jin-Yi Yu ◽  
Xiaoming Hu ◽  
Wenjie Dong ◽  
...  

AbstractExtensive research has improved our understanding and forecast of the occurrence, evolution and global impacts of the El Niño–Southern Oscillation (ENSO). However, ENSO changes as the global climate warms up and it exhibits different characteristics and climate impacts in the twenty-first century from the twentieth century. Climate models project that ENSO will also change in the warming future and have not reached an agreement about the flavor, as to the intensity and the frequency, of future ENSO conditions. This article presents the conventional view of ENSO properties, dynamics and teleconnections, and reviews the emerging understanding of the diversity and associated climate impacts of ENSO. It also reviews the results from investigations into the possible changes in ENSO under the future global-warming scenarios.


1998 ◽  
Vol 16 (11) ◽  
pp. 1523-1526 ◽  
Author(s):  
J. S. Bailey

Abstract. I report the discovery of a low frequency temperature oscillation in the eastern North Atlantic (NA), which was significantly correlated with the Southern Oscillation Index (SOI) in the tropical Pacific, but led the latter index by a number of months. This discovery is significant, because it demonstrates a link between the tropical Pacific and the high northerly latitudes which cannot readily be explained in terms of El Niño/Southern Oscillation (ENSO) feedbacks from the tropics, and opens up the possibility that ENSO and temperature anomalies in northerly climes, may actually have a common origin within, or even external to, the global climate system.Key words. Meteorology and Atmospheric dynamics (ocean-atmosphere interactions) · Oceanography: general (climate and interannual variability) · Oceanography: physical (air-sea interactions)  


Sign in / Sign up

Export Citation Format

Share Document