MODELING OF NEURAL PREDICTIVE CONTROL OF IRRIGATION MACHINES

2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.

Author(s):  
Senthil Kumar Arumugasamy ◽  
Zainal Ahmad

Process control in the field of chemical engineering has always been a challenging task for the chemical engineers. Hence, the majority of processes found in the chemical industries are non-linear and in these cases the performance of the linear models can be inadequate. Recently a promising alternative modelling technique, artificial neural networks (ANNs), has found numerous applications in representing non-linear functional relationships between variables. A feedforward multi-layered neural network is a highly connected set of elementary non-linear neurons. Model-based control techniques were developed to obtain tighter control. Many model-based control schemes have been proposed to incorporate a process model into a control system. Among them, model predictive control (MPC) is the most common scheme. MPC is a general and mathematically feasible scheme to integrate our knowledge about a target, process controller design and operation, which allows flexible and efficient exploitation of our understanding of a target, and thus produces optimal performance of a system under various constraints. The need to handle some difficult control problems has led us to use ANN in MPC and has recently attracted a great deal of attention. The efficacy of the neural predictive control with the ability to perform comparably to the non linear neural network strategy in both set point tracking and disturbance rejection proves to have less computation expense for the neural predictive control. The neural network model predictive control (NNMPC) method has less perturbations and oscillations when dealing with noise as compared to the PI controllers.


Author(s):  
Maciej Ławryńczuk

A Family of Model Predictive Control Algorithms With Artificial Neural NetworksThis paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar. Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Viktor Prokop ◽  
Jan Stejskal ◽  
Beata Mikusova Merickova ◽  
Samuel Amponsah Odei

PurposeThe purpose of this study is to introduce innovative ideas into the treatment of the radical and incremental innovations and to fill the research gap by using: (1) methods that can perform complicated tasks and solve complex problems leading in creation of radical and incremental innovation and (2) a broad sample of firms across countries. The authors’ ambition is to contribute to the scientific knowledge by producing evidence about the novel usage of artificial neural network techniques for measuring European firms' innovation activities appearing in black boxes of innovation processes.Design/methodology/approachIn this study, the authors incorporate an international context into Chesbrough's open innovation (OI) theory and, on the one hand, support the hypothesis that European radical innovators benefit more from foreign cooperation than incremental innovators. On the other hand, the results of the analyses show that European incremental innovators rely on domestic cooperation supported by cooperation with foreign public research institutes. Moreover, the use of decision trees (DT) allows the authors to reveal specific patterns of successful innovators emerging within the hidden layers of neural networks.FindingsThe authors prove that radical European innovators using either internal or external R&D strategies, while the combinations of these strategies do not bring successful innovation outputs. In contrast, European incremental innovators benefit from various internal R&D processes in which engagement in design activities plays a crucial role.Originality/valueThe authors introduce innovative ideas into the treatment of hidden innovation processes and measuring the innovation performance (affected by domestic or international cooperation) of European firms. The approach places emphasis on the novelty of innovation and the issue of international cooperation in the era of OI by designing the framework using a combination of artificial neural networks and DT.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 588
Author(s):  
Felipe Leite Coelho da Silva ◽  
Kleyton da Costa ◽  
Paulo Canas Rodrigues ◽  
Rodrigo Salas ◽  
Javier Linkolk López-Gonzales

Forecasting the industry’s electricity consumption is essential for energy planning in a given country or region. Thus, this study aims to apply time-series forecasting models (statistical approach and artificial neural network approach) to the industrial electricity consumption in the Brazilian system. For the statistical approach, the Holt–Winters, SARIMA, Dynamic Linear Model, and TBATS (Trigonometric Box–Cox transform, ARMA errors, Trend, and Seasonal components) models were considered. For the approach of artificial neural networks, the NNAR (neural network autoregression) and MLP (multilayer perceptron) models were considered. The results indicate that the MLP model was the one that obtained the best forecasting performance for the electricity consumption of the Brazilian industry under analysis.


2014 ◽  
Vol 33 (6) ◽  
pp. 419-432 ◽  
Author(s):  
Christian von Spreckelsen ◽  
Hans-Jörg von Mettenheim ◽  
Michael H. Breitner

Author(s):  
Martín Montes Rivera ◽  
Alejandro Padilla ◽  
Juana Canul-Reich ◽  
Julio Ponce

Vision sense is achieved using cells called rods (luminosity) and cones (color). Color perception is required when interacting with educational materials, industrial environments, traffic signals, among others, but colorblind people have difficulties perceiving colors. There are different tests for colorblindness like Ishihara plates test, which have numbers with colors that are confused with colorblindness. Advances in computer sciences produced digital assistants for colorblindness, but there are possibilities to improve them using artificial intelligence because its techniques have exhibited great results when classifying parameters. This chapter proposes the use of artificial neural networks, an artificial intelligence technique, for learning the colors that colorblind people cannot distinguish well by using as input data the Ishihara plates and recoloring the image by increasing its brightness. Results are tested with a real colorblind people who successfully pass the Ishihara test.


Sign in / Sign up

Export Citation Format

Share Document