Fuzzy and Artificial Neural Networks-Based Intelligent Control Systems Using Python

2019 ◽  
2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 567
Author(s):  
Jolanta Wawrzyniak

Artificial neural networks (ANNs) constitute a promising modeling approach that may be used in control systems for postharvest preservation and storage processes. The study investigated the ability of multilayer perceptron and radial-basis function ANNs to predict fungal population levels in bulk stored rapeseeds with various temperatures (T = 12–30 °C) and water activity in seeds (aw = 0.75–0.90). The neural network model input included aw, temperature, and time, whilst the fungal population level was the model output. During the model construction, networks with a different number of hidden layer neurons and different configurations of activation functions in neurons of the hidden and output layers were examined. The best architecture was the multilayer perceptron ANN, in which the hyperbolic tangent function acted as an activation function in the hidden layer neurons, while the linear function was the activation function in the output layer neuron. The developed structure exhibits high prediction accuracy and high generalization capability. The model provided in the research may be readily incorporated into control systems for postharvest rapeseed preservation and storage as a support tool, which based on easily measurable on-line parameters can estimate the risk of fungal development and thus mycotoxin accumulation.


2014 ◽  
Vol 556-562 ◽  
pp. 6011-6014 ◽  
Author(s):  
Xiao Guang Li

Intelligent control is a class of control techniques that use various AI computing approaches like neural networks, Bayesian probability, fuzzy logic, machine learning, evolutionary computation and genetic algorithms. In computer science and related fields, artificial neural networks are computational models inspired by animals’ central nervous systems (in particular the brain) that are capable of machine learning and pattern recognition. They are usually presented as systems of interconnected “neurons” that can compute values from inputs by feeding information through the network. Like other machine learning methods, neural networks have been used to solve a wide variety of tasks that are hard to solve using ordinary rule-based programming, including computer vision and speech recognition.


Sign in / Sign up

Export Citation Format

Share Document