scholarly journals Bird populations in logged and unlogged western larch/Douglas-fir forest in northwestern Montana

Author(s):  
Bret W. Tobalske ◽  
Raymond C. Shearer ◽  
Richard L. Hutto
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 597
Author(s):  
Jacob A. Reely ◽  
Andrew S. Nelson

Environmental conditions and seedling quality interact to produce complex patterns of seedling survival and growth. Root growth potential (RGP) is one metric of seedling quality that can be rapidly measured prior to planting, but the correlation of RGP and seedling performance is not consistent across studies. Site factors including microsite objects that cast shade and competing vegetation can also influence seedling performance. We examined the effects of RGP, presence/absence of a microsite object, and competition cover on the survival and growth of three native conifers to the Inland Northwest, USA, over 5 years. We found that RGP had no effect on the survival or growth of western larch (Larix occidentalis), Douglas fir (Pseudotsuga menziesii var. glauca), and grand fir (Abies grandis) at a mesic north aspect site and a xeric south aspect site. Comparatively, the presence of a microsite increased the odds of survival by 37% for western larch and 158% for grand fir, while the absence of forb cover increased the odds of survival of western larch by 72% and of grand fir by 26%. Douglas fir was less sensitive to microsites and competition. The strong effects of neighborhood conditions around seedlings help inform silvicultural practices to enhance the establishment of western larch and grand fir, including planting seedlings near shading objects and competition control, while these practices may not be as important for Douglas fir.


1958 ◽  
Vol 30 (2) ◽  
pp. 279-281 ◽  
Author(s):  
G. M. Barton ◽  
J. A. F. Gardner
Keyword(s):  

1993 ◽  
Vol 23 (3) ◽  
pp. 545-552 ◽  
Author(s):  
David F. Cobb ◽  
Kevin L. O'hara ◽  
Chadwick D. Oliver

The development of six mixed-species, even-aged stands was reconstructed in the eastern Washington Cascade Range. All stands were within the Grand Fir Climax Series and began following stand replacement disturbances. Western larch (Larixoccidentalis Nutt.) and lodgepole pine (Pinuscontorta Dougl. ex Loud.), when present, formed an upper stratum over interior Douglas-fir (Pseudotsugamenziesii var. glauca (Beissn.) Franco) and grand fir (Abiesgrandis (Dougl.) Lindl.) in all six stands. Establishment patterns and species composition affected stand development patterns. Douglas-fir benefitted from the absence of lodgepole pine; grand fir benefitted from the absence of Douglas-fir, but apparently not from the absence of lodgepole pine. Lodgepole pine had faster initial diameter growth rates than western larch when it became established relatively early and in large numbers.


1984 ◽  
Vol 9 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Clinton E. Carlson ◽  
Robert W. Campbell ◽  
Leon J. Theroux ◽  
Thomas H. Egan

1987 ◽  
Vol 17 (7) ◽  
pp. 630-634 ◽  
Author(s):  
Stith T. Gower ◽  
Charles C. Grier ◽  
Daniel J. Vogt ◽  
Kristiina A. Vogt

Logarithmic equations for estimating component biomass and projected leaf area from stem diameter and (or) sapwood cross-sectional area were computed for western larch (Larixoccidentalis Nutt.), lodgepole pine (Pinuscontorta Dougl.), and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) in a mixed conifer stand in the Cascades of central Washington. Regression equations for estimating foliage biomass reported in this study did not compare favorably with foliage biomass allometric relations from other studies. For a given diameter, western larch supported a greater current foliage mass than lodgepole pine or Douglas-fir (P < 0.001); however, the total foliage mass of lodgepole pine was significantly greater (P < 0.001) than western larch. Despite lodgepole pine supporting a total foliage mass approximately twofold greater than western larch, allometric relations between foliage area and stem diameter were not different (P > 0.05) between the deciduous and evergreen conifer. Western larch supports a needle morphology that provides a greater photosynthetic surface area per unit of carbon invested than evergreen conifers in this environment.


Sign in / Sign up

Export Citation Format

Share Document