evergreen conifers
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1737
Author(s):  
Kristýna Večeřová ◽  
Karel Klem ◽  
Barbora Veselá ◽  
Petr Holub ◽  
John Grace ◽  
...  

Plants produce specific terpenes, secondary metabolites conferring tolerance to biotic and abiotic stresses. Our study aims to investigate the effects of altitude, light intensity and season on contents of mono- and sesquiterpenes in needles of coniferous Norway spruce (Picea abies). Needles of current shoots representing upper and lower canopy were collected from adult trees growing along an altitudinal gradient (400–1100 m a.s.l.) in summer and autumn. After the extraction in cold heptane, the content of extractable terpenes was determined by gas chromatography coupled with mass spectrometry. Our results show that the total content of terpenes decreases with increasing altitude regardless of canopy position and season. Needles of the upper canopy have a higher total content of terpenes than lower canopy needles, but this difference decreases with increasing altitude in summer. Total content of extractable terpenes increases in autumn when compared to summer particularly in upper canopy needles of trees from high altitudes. Limonene, camphene, α-pinene and myrcene are the most abundant monoterpenes in spruce needles forming up to 85% of total monoterpenes, while germacrene D-4-ol is the most abundant sesquiterpene. Altitude, canopy position and season have a significant interactive effect on most monoterpenes, but not on sesquiterpenes. Terpenoid biosynthesis is thus tightly linked to growth conditions and likely plays a crucial role in the constitution of stress tolerance in evergreen conifers.


2021 ◽  
Author(s):  
Diana Eckert ◽  
Helle Juel Martens ◽  
Lianhong Gu ◽  
Anna Monrad Jensen

Abstract The percentage of respiratory and photorespiratory CO2 refixed in leaves (Pr) represents part of the CO2 used in photosynthesis. The importance of Pr as well as differences between species and functional types are still not well investigated. In this study, we examine how Pr differs between six temperate and boreal woody species: Betula pendula, Quercus robur, Larix decidua, Pinus sylvestris, Picea abies, and Vaccinium vitis-idaea. The study covers early and late successional species, deciduous broadleaves, deciduous conifers, evergreen conifers, and evergreen broadleaves. We investigated whether some species or functional types had higher refixation percentages than others, whether leaf traits could predict higher Pr, and whether these traits and their impact on Pr changed during growing seasons. A/Ci-curves, measured early, mid and late season, were used to estimate and compare Pr, mesophyll resistance (rm), and stomatal resistance (rs) to CO2 diffusion. Additionally, light images and transmission electron microscope images were used to approximate the fraction of intercellular airspace and cell wall thickness. We found that evergreens, especially late successional species, refixed a significantly higher amount of CO2 than the other species throughout the entire growing season. In addition, rm, rs and leaf mass per area, traits that typically are higher in evergreen species, were also significantly, positively correlated with Pr. We suggest that this is due to higher rm decreasing diffusion of (photo) respiratory CO2 out of the leaf. Cell wall thickness had a positive effect on Pr and rm, while the fraction of intercellular airspace had no effect. Both were significantly different between evergreen conifers and other types. Our findings suggest that species with a higher rm use a greater fraction of mitochondria-derived CO2, especially when stomatal conductance is low. This should be taken into account when modeling the overall CO2 fertilization effect for terrestrial ecosystems dominated by high-rm species.


2020 ◽  
Vol 8 ◽  
Author(s):  
Tito Arosio ◽  
Malin Michelle Ziehmer-Wenz ◽  
Kurt Nicolussi ◽  
Christian Schlüchter ◽  
Markus Leuenberger

The analysis of the stable isotope of the tree-ring cellulose is an important tool for paleo climatic investigations. Long tree-ring chronologies consist predominantly of oaks and conifers in Europe, including larch trees (Larix decidua) and cembran pines (Pinus cembra) that form very long tree ring chronologies in the Alps and grow at the treeline, where tree growth is mainly determined by temperature variations. We analyzed δ13C, δ18O and δ2H isotopes in the cellulose extracted from tree-rings of wood samples collected at high altitude in the Swiss and Tyrol Alps, covering the whole Holocene period. We found that larch cellulose was remarkably more depleted in deuterium than that of cembran pine, with mean δ2H values of −113.4 ± 9.7‰ for larch and of −65.4 ± 11.3‰ for cembran pine. To verify if these depleted values were specific to larch or a property of the deciduous conifers, we extended the analysis to samples from various living conifer species collected at the Bern Botanical Garden. The results showed that not only the larch, but also all the samples of the deciduous larch family had a cellulose composition that was highly depleted in δ2H with regard to the other evergreen conifers including cembran pine, a difference that we attribute to a faster metabolism of the deciduous conifers. The δ18O values were not statistically different among the species, in agreement with the hypothesis that they are primary signals of the source water. While the δ13C values were slightly more depleted for larch than for cembran pine, likely due to metabolic differences of the two species. We conclude that the deciduous larch conifers have specific metabolic hydrogen fractionations and that the larch unique signature of δ2H is useful to recognize it from other conifers in subfossil wood samples collected for paleoclimatic studies. For climate information the absolute δ2H values of larch should be considered carefully and separate from other species.


2020 ◽  
pp. 113-120
Author(s):  
N. Obojes ◽  
E. Tasser ◽  
C. Newesely ◽  
S. Mayr ◽  
U. Tappeiner

Trees ◽  
2020 ◽  
Author(s):  
Dina F. Zhirnova ◽  
Liliana V. Belokopytova ◽  
Elena A. Babushkina ◽  
Alan Crivellaro ◽  
Eugene A. Vaganov

2020 ◽  
Vol 229 (2) ◽  
pp. 675-691 ◽  
Author(s):  
Christine Yao‐Yun Chang ◽  
Katharina Bräutigam ◽  
Norman P. A. Hüner ◽  
Ingo Ensminger

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1011
Author(s):  
Piotr Robakowski ◽  
Tomasz P. Wyka ◽  
Wojciech Kowalkowski ◽  
Władysław Barzdajn ◽  
Emilia Pers-Kamczyc ◽  
...  

Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth responses of seedlings of four economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica L., Quercus petraea (Matt.) Liebl., and evergreen conifers Abies alba Mill. and Pinus sylvestris L. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation, and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues, and smaller conduit diameters. These responses did not occur in conifers. Relative transcript abundance of a gene encoding the Zn-finger protein in Q. petraea and a gene encoding the pore calcium channel protein 1 in A. alba increased as water deficit increased. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.


Author(s):  
Piotr Robakowski ◽  
Tomasz Wyka ◽  
Kowalkowski Wojciech ◽  
Władysław Barzdajn ◽  
Emilia Pers-Kamczyc ◽  
...  

Recent climatic changes have resulted in an increased frequency and prolonged periods of drought and strained water resources affecting plant production. We explored the possibility of reducing irrigation in a container nursery and studied the growth response of seedlings of economically important forest trees: broadleaf deciduous angiosperms Fagus sylvatica, Quercus petraea and evergreen conifers Abies alba and Pinus sylvestris. We also studied markers of water stress including modifications of biomass allocation, leaf anatomy, proline accumulation and expression of selected genes. Growth of the broadleaved deciduous species was more sensitive to the reduced water supply than that of conifers. Remarkably, growth of the shade tolerant Abies was not affected. Adjustment of biomass allocations was strongest in P. sylvestris, with a remarkable increase in allocation to roots. In response to water deficit both deciduous species accumulated proline in leaves and produced leaves with shorter palisade cells, reduced vascular tissues and smaller conduit diameters, but not conifers. Relative transcript abundance of a gene encoding a Zn-finger protein in Q. petraea and a gene encoding a pore calcium channel protein 1 in A. alba increased as water deficit increased. These findings suggest that in container nursery, the genetic selection can be initiated by water deficit. Our study shows major differences between functional groups in response to irrigation, with seedlings of evergreen conifers having higher tolerance than the deciduous species. This suggests that major water savings could be achieved by adjusting irrigation regime to functional group or species requirements.


2020 ◽  
Vol 117 (30) ◽  
pp. 17499-17509 ◽  
Author(s):  
Steffen Grebe ◽  
Andrea Trotta ◽  
Azfar Ali Bajwa ◽  
Ilaria Mancini ◽  
Pushan Bag ◽  
...  

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below −4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to −10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Sign in / Sign up

Export Citation Format

Share Document