Antipredator response data for captive, male red-wing blackbirds toward drones used as frightening devices

Author(s):  
Conor C. Egan ◽  
Bradley F. Blackwell ◽  
Esteban Fernández-Juricic ◽  
Page E. Klug
2002 ◽  
Vol 7 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
J. Christensen ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed. The model bases on non-stationary diffusion equations containing a non-linear term related to Michaelis-Menten kinetic of the enzymatic reaction. The model describes the biosensor response to mixtures of multiple compounds in two regimes of analysis: batch and flow injection. Using computer simulation, large amount of biosensor response data were synthesised for calibration of a biosensor array to be used for characterization of wastewater. The computer simulation was carried out using the finite difference technique.


2019 ◽  
Vol 139 (8) ◽  
pp. 882-888
Author(s):  
Shiro Masuda ◽  
Jongho Park ◽  
Yoshihiro Matsui

2016 ◽  
Vol 136 (5) ◽  
pp. 625-632
Author(s):  
Yoshihiro Matsui ◽  
Hideki Ayano ◽  
Shiro Masuda ◽  
Kazushi Nakano

Author(s):  
Nova T. Zamora ◽  
Kam Meng Chong ◽  
Ashish Gupta

Abstract This paper presented the recent application of die powerup in Thermal Imaging as applied to the detection of defects causing thermal failure on revenue products or units not being captured using other available techniques. Simulating the condition on an actual computer setup, the infrared (IR) camera should capture images simultaneously as the entire bootup process is being executed by the processor, thus revealing a series of images and thermal information on each and every step of the startup process. This metrology gives the failure analyst a better approach to acquire a set of information that substantiate in the conduct of rootcause analysis of thermal-related failure in revenue units, especially on customer returns. Defective units were intentionally engineered in order to collect the thermal response data and eventually come up with a plot of all known thermal-related defects.


1995 ◽  
Vol 25 (2) ◽  
pp. 208-214 ◽  
Author(s):  
J.S. Shumway ◽  
H.N. Chappell

The Diagnosis and Recommendation Integrated System (DRIS) has been used successfully in agricultural crops and holds promise for use in forest stands. This study used soil tests to develop DRIS norms and evaluate their effectiveness in coastal Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) forests. DRIS norms for nitrogen, phosphorus, potassium, and calcium were developed using soil test and site index data from 72 soil series that commonly support Douglas-fir in western Washington. The norms were tested using soil test and stand basal area growth response data from 20 thinned and 30 unthinned N fertilizer test sites in coastal Washington and Oregon. Response to urea fertilizer in thinned stands averaged 34% and 43% for 224 and 448 kg N•ha−1, respectively, when N was identified as the most limiting nutrient. When N was not the most limiting nutrient, N response averaged 8% and 10% for 224 and 448 kg N•ha−1, respectively. Results were similar in unthinned stands and thinned stands, although response to fertilizer appeared to be slightly less in unthinned stands when N was the most limiting nutrient. DRIS correctly classified 25 of the 33 sites (76%) where N fertilizer increased growth by more than 15%. More importantly, 13 of the 17 (76%) sites that responded by less than 15% were correctly identified by DRIS. The results clearly indicate that N fertilizer response is dependent on the interactions (balance) between soil nutrients at a given site. Future soil diagnostic work needs to focus on techniques, like DRIS, that provide an assessment of these interactions.


Sign in / Sign up

Export Citation Format

Share Document