scholarly journals An Open-Label, Single-Arm Study of a Patient-Specific Femoral Guide for Total Hip Arthroplasty via the Anterolateral Supine Approach, Linked with Three-Dimensional Surgical Support Software: Study Protocol

2018 ◽  
Vol 65 (2) ◽  
pp. 71-75
Author(s):  
DAIHEI KIDA ◽  
HIROYA HASHIMOTO ◽  
NORIKO ITO ◽  
YUKARI KITO ◽  
KOUICHI MORI ◽  
...  
2019 ◽  
Vol 21 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Piotr Sypień ◽  
Paweł Łęgosz ◽  
Paweł Małdyk

We present a case report of a 70-year-old female patient with a history of right hip dysplasia and total hip arthroplasty complicated by chronic periprosthetic hipction. Failure of oral antibiotic treatment was an indication for implant removal. A computed tomography scan performed during qualification for reimplantation revealed massive bone defects in the pelvis. A three-dimensional printed patient-specific anatomical model of the pelvis helped to determine the precise position and cup size in preoperative planning and prepare a patient-matched acetabulum. The custom-made endoprosthesis was implanted during revision arthroplasty.


SICOT-J ◽  
2021 ◽  
Vol 7 ◽  
pp. 26
Author(s):  
Andreas Fontalis ◽  
Jean-Alain Epinette ◽  
Martin Thaler ◽  
Luigi Zagra ◽  
Vikas Khanduja ◽  
...  

Total hip arthroplasty (THA) has been quoted as one of the most successful and cost-effective procedures in Orthopaedics. The last decade has seen an exponential rise in the number of THAs performed globally and a sharp increase in the percentage of young patients hoping to improve their quality of life and return to physically demanding activities. Hence, it is imperative to review the various applications of technology in total hip arthroplasty for improving outcomes. The development of state-of-the-art robotic technology has enabled more reproducible and accurate acetabular positioning, while long-term data are needed to assess its cost-effectiveness. This opinion piece aims to outline and present the advances and innovations in total hip arthroplasty, from virtual reality and three-dimensional printing to patient-specific instrumentation and dual mobility bearings. This illustrates and reflects the debate that will be at the centre of hip surgery for the next decade.


Author(s):  
Bradley Hanks ◽  
Shantanab Dinda ◽  
Sanjay Joshi

Total hip arthroplasty (THA) is an increasingly common procedure that replaces all or part of the hip joint. The average age of patients is decreasing, which in turn increases the need for more durable implants. Revisions in hip implants are frequently caused by three primary issues: femoral loading, poor fixation, and stress shielding. First, as the age of hip implant patients decreases, the hip implants are seeing increased loading, beyond what they were traditionally designed for. Second, traditional implants may have roughened surfaces but are not fully porous which would allow bone to grow in and through the implant. Third, traditional implants are too stiff, causing more load to be carried by the implant and shielding the bone from stress. Ultimately this stress shielding leads to bone resorption and implant loosening. Additive manufacturing (AM) presents a unique opportunity for enhanced performance by allowing for personalized medicine and increased functionality through geometrically complex parts. Much research has been devoted to how AM can be used to improve surgical implants through lattice structures. To date, the authors have found no studies that have performed a complete 3D lattice structure optimization in patient specific anatomy. This paper discusses the general design of an AM hip implant that is personalized for patient specific anatomy and proposes a workflow for optimizing a lattice structure within the implant. Using this design workflow, several lattice structured AM hip implants of various unit cell types are optimized. A solid hip implant is compared against the optimized hip implants. It appears the AM hip implant with a tetra lattice outperforms the other implant by reducing stiffness and allowing for greater bone ingrowth. Ultimately it was found that AM software still has many limitations associated with attempting complex optimizations with multiple materials in patient specific anatomy. Though software limitations prevented a full 3D optimization in patient specific anatomy, the challenges associated such an approach and limitations of the current software are discussed.


2021 ◽  
pp. 155633162110508
Author(s):  
Zachary Berliner ◽  
Cameron Yau ◽  
Kenneth Jahng ◽  
Marcel A. Bas ◽  
H. John Cooper ◽  
...  

Background: Although total hip arthroplasty (THA) performed through the direct anterior (DA) approach is frequently marketed as superior to other approaches, there are concerns about increased risks of intraoperative and early postoperative femoral fracture. Purpose: We sought to assess patient-specific and radiographic risk factors for intraoperative and early postoperative (90-day) periprosthetic femoral fracture (PPFx) following DA approach THA. Methods: We retrospectively reviewed 1107 consecutive, primary, non-cemented DA THAs, performed between April 2009 and January 2015, for intraoperative and early postoperative PPFx. Patients lost to follow-up before 90 days (63), cemented or hybrid THA (52), or early femoral failure for another indication (3) were excluded, yielding 989 hips for analysis. Demographic variables and patient comorbidities were analyzed as risk factors for PPFx. Continuous variables were initially compared with 1-way analysis of variance (ANOVA) and categorical variables with chi-square test. A demographic matched-paired radiographic analysis was performed for femoral stem canal fill and compared using univariate logistic regression. Results: The incidence of perioperative PPFx was 2.02%, including 10 intraoperative and 10 early postoperative fractures. Sustaining a postoperative PPFx was associated with being 70 years old or older with a body mass index (BMI) of less than 25, or with having either osteoporosis or Parkinson disease. Radiographs demonstrated that intraoperative PPFx was associated with stems that filled greater proximally rather than distally. Conclusion: Our cohort study found older age, age over 70 with BMI of less than 25, osteoporosis, and Parkinson disease were associated with increased risk for early postoperative PPFx following DA approach THA. Intraoperative fractures may occur with disproportionate proximal femoral canal fill. Further study can evaluate whether cemented femoral components may mitigate risk in these patient populations.


Sign in / Sign up

Export Citation Format

Share Document