Role of fertilization promoting peptide FPP in modulating mammalian sperm function

10.2741/a355 ◽  
1998 ◽  
Vol 3 (4) ◽  
pp. d1187-1191 ◽  
Author(s):  
Lynn R Fraser
Author(s):  
Marc Llavanera ◽  
Yentel Mateo-Otero ◽  
Ariadna Delgado-Bermúdez ◽  
Sandra Recuero ◽  
Samuel Olives ◽  
...  

Fifty percent of male subfertility diagnosis is idiopathic and is usually associated with genetic abnormalities or protein dysfunction, which are not detectable through the conventional spermiogram. Glutathione S-transferases (GSTs) are antioxidant enzymes essential for preserving sperm function and maintaining fertilizing ability. However, while the role of GSTP1 in cell signaling regulation via the inhibition of c-Jun N-terminal kinases (JNK) has been enlightened in somatic cells, it has never been investigated in mammalian spermatozoa. In this regard, a comprehensive approach through immunoblotting, immunofluorescence, computer-assisted sperm assessment (CASA), and flow cytometry analysis was used to characterize the molecular role of the GSTP1–JNK heterocomplex in sperm physiology, using the pig as a model. Immunological assessments confirmed the presence and localization of GSTP1 in sperm cells. The pharmacological dissociation of the GSTP1–JNK heterocomplex resulted in the activation of JNK, which led to a significant decrease in sperm viability, motility, mitochondrial activity, and plasma membrane stability, as well as to an increase of intracellular superoxides. No effects in intracellular calcium levels and acrosome membrane integrity were observed. In conclusion, the present work has demonstrated, for the first time, the essential role of GSTP1 in deactivating JNK, which is crucial to maintain sperm function and has also set the grounds to understand the relevance of the GSTP1–JNK heterocomplex for the regulation of mammalian sperm physiology.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 46
Author(s):  
Yusei Makino ◽  
Yuuki Hiradate ◽  
Kohei Umezu ◽  
Kenshiro Hara ◽  
Kentaro Tanemura

The nicotinic acetylcholine receptor (nAChR) is one of the receptors of acetylcholine (ACh), and nicotine (NIC) acts as an agonist of this receptor. Among the nAChR subunits, we found that the ε subunit (AChRe) had approximately 10 to 1000 times higher level of mRNA expression in mouse testes than the other subunits. In this study, we aimed to elucidate the expression and localization of AChRe in the testes and spermatozoa of mice and clarify the effect of AChRe on sperm function. Immunocytochemistry showed that AChRe was expressed in the murine testes and spermatozoa. We found that AChRe was localized only in elongated spermatids from step 12 onwards in the testes. In spermatozoa, AChRe was localized in the head, especially in the anterior region of the acrosome, but only approximately 50% of spermatozoa showed this immunoreactivity. Additionally, we analyzed the effects of ACh and NIC on sperm acrosome reaction (AR) and found that both ACh and NIC suppressed the AR rate, which was restored by an AChRe-specific antagonist. These results suggest that AChRe may be a regulator of mammalian sperm AR.


1995 ◽  
Vol 7 (4) ◽  
pp. 905 ◽  
Author(s):  
LR Fraser

Successful sperm function leads to fertilization. It is dependent on the extracellular environment, especially the array and concentration of various ions. Considerable evidence indicates that this is because of consequent effects on the intracellular ionic composition. Although both cations and anions undoubtedly play a role in a modulating sperm function, most of the evidence currently available concerns cations. Therefore, this review will concentrate on cations, focussing on Ca2+, Na+, K+ and H+. Their requirements for successful capacitation (mammalian sperm) and acrosomal exocytosis (both invertebrate and mammalian sperm) will be considered. In particular, the mechanisms which may control ion fluxes, leading to changes in the intracellular ionic composition and subsequently to changes in sperm functional potential, will be addressed.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 181-182
Author(s):  
Ariadna Delgado-Bermúdez ◽  
Yentel Mateo-Otero ◽  
Marc Llavanera ◽  
Sergi Bonet ◽  
Marc Yeste ◽  
...  

2006 ◽  
Vol 5 (3) ◽  
pp. 161-168 ◽  
Author(s):  
HARUO KATAYOSE ◽  
TOMOKO TAKAYAMA ◽  
SHOUTAROU HAYASHI ◽  
AKIRA SATO

Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 251-260 ◽  
Author(s):  
João Diego de Agostini Losano ◽  
Daniel de Souza Ramos Angrimani ◽  
Roberta Ferreira Leite ◽  
Bárbara do Carmo Simões da Silva ◽  
Valquíria Hyppolito Barnabe ◽  
...  

SummaryDespite sperm mitochondrial relevance to the fertilization capacity, the processes involved in the production of ATP and functional dynamics of sperm mitochondria are not fully understood. One of these processes is the paradox involved between function and formation of reactive oxygen species performed by the organelle. Therefore, this review aimed to provide data on the role of sperm mitochondria in oxidative homeostasis and functionality as well the tools to assess sperm mitochondrial function.


2016 ◽  
Vol 28 (2) ◽  
pp. 131
Author(s):  
B. Fernandez-Fuertes ◽  
F. Narciandi ◽  
K. G. Meade ◽  
C. O'Farrelly ◽  
S. Fair ◽  
...  

As immature sperm migrate through the epididymis, they are bathed in region-specific epididymal fluid, which leads to a sequential addition, deletion, and modification of their surface proteins. These changes ultimately result in the acquisition of motility and fertilising abilities. Among the hundreds of proteins secreted by the epididymis, several β-defensins have been identified and correlated with male fertility in multiple species. In cattle, β-defensin 126 (BD126) is exclusively detected in the reproductive tract of pubertal males, with preferential mRNA expression in the epididymis. Both the macaque and human orthologs have been shown to play a role in the ability of sperm to migrate through cervical mucus. The aim of this study was to examine the role of bovine BD126 in sperm function. Western blot revealed that the peptide is uniquely present in both the cauda epididymis sperm and fluid and is absent from sperm recovered from other proximal epididymal regions, or the ejaculate of vasectomised animals. Confocal analysis showed immunofluorescent labelling of BD126 specific to the tail and acrosomal region in cauda sperm only, suggesting a role in motility. We hypothesised that addition of cauda epididymal fluid (CEF) or recombinant BD126 (rBD126) to immature corpus sperm would improve ability to penetrate cervical mucus. Testes from adult bulls were collected at an abattoir, and sperm from the corpus and cauda epididymis, as well as CEF, were recovered. Corpus sperm were incubated for 1 h with CEF in the absence or presence of BD126 antibody, or with different rBD126 concentrations (30 or 60 μg mL–1); untreated corpus and cauda sperm were used as controls. A higher number of cauda than corpus sperm migrated through cervical mucus from oestrus cows (P < 0.001), and addition of CEF increased the number of corpus sperm migrating through this matrix (P < 0.05). The presence of the BD126 antibody in CEF failed to abrogate this effect. Western blot analysis of the sperm samples revealed the antibody was not successful in blocking BD126 from binding onto the sperm surface, which would explain the lack of differences observed. Furthermore, the addition of rBD126 did not increase corpus sperm migration through mucus. In conclusion, we have characterised the expression of bovine BD126 protein in the bovine testis and epididymis. Incubation of sperm from the corpus with CEF from the cauda resulted in enhanced sperm migration through cervical mucus. However, incubation of sperm with rBD126 in the absence of other factors and proteins from the CEF failed to produce the same effect. These results suggest that the role of BD126 in cattle is different from that observed in primates. We are currently investigating other roles of BD126 and related β-defensins in mediating bovine sperm function. This work was supported by a grant from the Irish Department of Agriculture, Food and The Marine under the Research Stimulus Programme (Grant No. 11S 104).


Sign in / Sign up

Export Citation Format

Share Document