Characteristic cycles of highest weight Harish-Chandra modules and the Weyl group action on the conormal variety

2019 ◽  
Vol 71 (2) ◽  
pp. 171-205
Author(s):  
Leticia Barchini
1994 ◽  
Vol 72 (7-8) ◽  
pp. 326-335 ◽  
Author(s):  
D. J. Britten ◽  
J. Hooper ◽  
F. W. Lemire

In this paper we show that there exist exactly two nonequivalent simple infinite dimensional highest weight Cn modules having the property that every weight space is one dimensional. The tensor products of these modules with any finite-dimensional simple Cn module are proven to be completely reducible and we provide an explicit decomposition for such tensor products. As an application of these decompositions, we obtain two recursion formulas for computing the multiplicities of simple finite dimensional Cn modules. These formulas involve a sum over subgroups of index 2 in the Weyl group of Cn.


2011 ◽  
Vol 63 (6) ◽  
pp. 1307-1327 ◽  
Author(s):  
Ivan Dimitrov ◽  
Ivan Penkov

AbstractA diagonal ind-group is a direct limit of classical affine algebraic groups of growing rank under a class of inclusions that contains the inclusionas a typical special case. If G is a diagonal ind-group and B ⊂ G is a Borel ind-subgroup, we consider the ind-variety G/B and compute the cohomology H𝓁(G/B,𝒪−λ) of any G-equivariant line bundle 𝒪−λ on G/B. It has been known that, for a generic λ, all cohomology groups of 𝒪−λ vanish, and that a non-generic equivariant line bundle 𝒪−λ has at most one nonzero cohomology group. The new result of this paper is a precise description of when Hj (G/B,𝒪−λ) is nonzero and the proof of the fact that, whenever nonzero, Hj (G/B,𝒪−λ) is a G-module dual to a highest weight module. The main difficulty is in defining an appropriate analog WB of the Weyl group, so that the action of WB on weights of G is compatible with the analog of the Demazure “action” of the Weyl group on the cohomology of line bundles. The highest weight corresponding to Hj (G/B,𝒪−λ) is then computed by a procedure similar to that in the classical Bott–Borel–Weil theorem.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Jennifer Morse ◽  
Anne Schilling

International audience We apply ideas from crystal theory to affine Schubert calculus and flag Gromov-Witten invariants. By defining operators on certain decompositions of elements in the type-$A$ affine Weyl group, we produce a crystal reflecting the internal structure of Specht modules associated to permutation diagrams. We show how this crystal framework can be applied to study the product of a Schur function with a $k$-Schur function. Consequently, we prove that a subclass of 3-point Gromov-Witten invariants of complete flag varieties for $\mathbb{C}^n$ enumerate the highest weight elements under these operators. Nous appliquons des idées provenant de la théorie des bases cristallines au calcul de Schubert affine et aux invariants de drapeaux de Gromov–Witten. Nous définissons des opérateurs sur certaines décompositions d’éléments de groupes de Weyl affines en type $A$ afin de construire une base cristalline encodant la structure interne des modules de Specht associés aux diagrammes de permutations. Nous montrons comment la structure de cristal permet d’étudier le produit d’une fonction de Schur avec une $k$-fonction de Schur. En conséquence, nous prouvons que la sous-classe des invariants de 3-points de Gromov–Witten d’une variété complète de drapeaux complets pour $\mathbb{C}^n$ énumère les éléments de poids maximaux pour ces opérateurs.


2009 ◽  
Vol 52 (1) ◽  
pp. 19-32 ◽  
Author(s):  
JOHAN KÅHRSTRÖM

AbstractLet be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I ⊆ S let I be the corresponding semi-simple subalgebra of . Denote by WI the Weyl group of I and let w○ and wI○ be the longest elements of W and WI, respectively. In this paper we show that the answer to Kostant's problem, i.e. whether the universal enveloping algebra surjects onto the space of all ad-finite linear transformations of a given module, is the same for the simple highest weight I-module LI(x) of highest weight x ⋅ 0, x ∈ WI, as the answer for the simple highest weight -module L(xwI○w○) of highest weight xwI○w○ ⋅ 0. We also give a new description of the unique quasi-simple quotient of the Verma module Δ(e) with the same annihilator as L(y), y ∈ W.


2011 ◽  
Vol 228 (5) ◽  
pp. 2874-2890
Author(s):  
Pierre Baumann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document