Periodic Responses of a Taut Cable Attached with a Friction Damper Computed Using Multi-Harmonic Balance Method

2016 ◽  
Vol 106 (9) ◽  
pp. 464-471 ◽  
Author(s):  
Limin SUN ◽  
Lin CHEN
Author(s):  
Pascal Reuss ◽  
Jens Becker ◽  
Lothar Gaul

In this paper damping induced by extensive friction occurring in the interface between bolted structures is considered by simulations and experiments. A friction damper is attached to a beam-like flexible structure by screws such that the normal force in the interface can be varied by the clamping force of the screws. Contact and friction force parameters are identified by the comparison of simulated and experimentally determined FRFs for a particular normal force. Afterward a prediction of damping for different configurations is established. For simulations a finite element model is used where suitable contact and friction models are implemented. A time simulation of the system is expensive due to the large number of DoFs of the discretized substructures and the required small step size due to the high contact stiffness. Therefore model reduction methods are used. A further reduction of the computation time can be achieved by using the Harmonic Balance Method (HBM) for a direct frequency domain computation of FRFs. This enables an efficient procedure to approximate the reachable damping as well as to search the optimal damper position and the optimal normal force. The dependency of the friction to the vibration amplitude is therefore taken into account. A more detailed investigation of the nonlinear effects, e.g. higher harmonic response, is then accomplished by transient simulations for the optimal configured system in the time domain and the results are compared to experimental results.


Author(s):  
M.M. Gourary ◽  
S.G. Rusakov ◽  
S.L. Ulyanov ◽  
M.M. Zharov ◽  
B.J. Mulvaney ◽  
...  

2011 ◽  
Vol 3 (6) ◽  
pp. 689-701
Author(s):  
Malik Mamode

AbstractThe exact analytical expression of the period of a conservative nonlinear oscillator with a non-polynomial potential, is obtained. Such an oscillatory system corresponds to the transverse vibration of a particle attached to the center of a stretched elastic wire. The result is given in terms of elliptic functions and validates the approximate formulae derived from various approximation procedures as the harmonic balance method and the rational harmonic balance method usually implemented for solving such a nonlinear problem.


Sign in / Sign up

Export Citation Format

Share Document