Efficient Damping Prediction of Bolted Structures Using Harmonic Balance Method

Author(s):  
Pascal Reuss ◽  
Jens Becker ◽  
Lothar Gaul

In this paper damping induced by extensive friction occurring in the interface between bolted structures is considered by simulations and experiments. A friction damper is attached to a beam-like flexible structure by screws such that the normal force in the interface can be varied by the clamping force of the screws. Contact and friction force parameters are identified by the comparison of simulated and experimentally determined FRFs for a particular normal force. Afterward a prediction of damping for different configurations is established. For simulations a finite element model is used where suitable contact and friction models are implemented. A time simulation of the system is expensive due to the large number of DoFs of the discretized substructures and the required small step size due to the high contact stiffness. Therefore model reduction methods are used. A further reduction of the computation time can be achieved by using the Harmonic Balance Method (HBM) for a direct frequency domain computation of FRFs. This enables an efficient procedure to approximate the reachable damping as well as to search the optimal damper position and the optimal normal force. The dependency of the friction to the vibration amplitude is therefore taken into account. A more detailed investigation of the nonlinear effects, e.g. higher harmonic response, is then accomplished by transient simulations for the optimal configured system in the time domain and the results are compared to experimental results.

Author(s):  
Frederic Schreyer ◽  
Remco Leine

Several numerical approaches have been developed to capture nonlinear effects of dynamical systems. In this paper we present a mixed shooting-harmonic balance method to solve large mechanical systems with local nonlinearities efficiently. The Harmonic Balance Method as well as the shooting method have both their pros and cons. The proposed mixed shooting-HBM approach combines the efficiency of HBM and the accuracy of the shooting method and has therefore advantages of both.


Sign in / Sign up

Export Citation Format

Share Document