scholarly journals Finite elements apparatus in thin-walled rods dynamics problems

2018 ◽  
Vol 245 ◽  
pp. 08007 ◽  
Author(s):  
Vladimir Rybakov ◽  
Stanislav Dyakov ◽  
Daniil Sovetnikov ◽  
Artur Azarov ◽  
Sergey Ivanov

The calculation of thin-walled rods is extremely relevant problem of structural mechanics and not only from the scientific standpoint, but also due to the widespread use of so-called lightweight thin-walled steel structures for construction engineering sector. Regardless of a sufficiently large number of studies connected with the statics of thin-walled rods, the dynamics of such systems have not been thoroughly studied yet. Based on one of the forward-looking theories of calculation i.e. the semi-shear theory by Slicker, the paper provides a technique for solving the dynamics problems of thin-walled rods. The stiffness and mass matrices of the finite element system are obtained for linear approximation of the form functions, and the natural vibration frequencies of the rods are calculated. The obtained solution is accomplished by the extrapolation method of estimating the accuracy of numerical methods for solving mathematical problems.

Author(s):  
D J Peel ◽  
C M Bingham ◽  
Y Wu ◽  
D Howe

Traditionally, active magnetic bearing (AMB) systems are designed as an integral component of machines having generally complex dynamic characteristics. An AMB supported rotor has been tested over a speed range that included system natural vibration frequencies. A linear stiffness and viscous damping AMB characteristic with constant coefficients was identified which was independent of the overall system characteristics and which can thus provide simple and transferable data for a machine designer.


2012 ◽  
Vol 4 (04) ◽  
pp. 483-495 ◽  
Author(s):  
C. Y. Wang

AbstractThe stability and natural vibration of a standing tapered vertical column under its own weight are studied. Exact stability criteria are found for the pointy column and numerical stability boundaries are determined for the blunt tipped column. For vibrations we use an accurate, efficient initial value numerical method for the first three frequencies. Four kinds of columns with linear taper are considered. Both the taper and the cross section shape of the column have large influences on the vibration frequencies. It is found that gravity decreases the frequency while the degree of taper may increase or decrease frequency. Vibrations may occur in two different planes.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Yeong Huei Lee ◽  
Cher Siang Tan ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

Connection is an important element in structural steelwork construction. Eurocode does not provide adequate design information for mechanical properties prediction of top-seat flange cleat connection, especially for thin-walled cold-formed steel structures. Adopting hot-rolled design with neglecting thin-walled behaviour could lead to unsafe or uneconomic design. This research aims to provide accurate mechanical properties prediction for bolted top-seat flange cleat connection in cold-formed steel structures. The scope of work focuses on the effect of various thickness of the flange cleat to the rotational stiffness and strength behaviour of a beam-to-column connection. Experimentally verified and validated finite element modelling technique is applied in the parametric investigation. Two categories of flange cleat thickness, ranged from 2 mm to 40 mm are studied. From the developed numerical models, it is observed that Eurocode has overestimated the initial rotational stiffness prediction, calculated with component method. The over-estimation would influence the overall stiffness of structures and force distribution within the components. As a conclusion, a set of newly proposed accurate predictions for initial rotational stiffness and strength of cold-formed steel top-seat flange cleat connection, with the influence of the thickness of flange cleat is presented.


Sign in / Sign up

Export Citation Format

Share Document