scholarly journals Mathematical Modelling of Crack Fractography after Implant Failure of Titanium 4.5 LCP Used for Flexible Bridging Osteosynthesis in a Miniature Pig

2010 ◽  
Vol 79 (4) ◽  
pp. 621-626 ◽  
Author(s):  
Alois Nečas ◽  
Lucie Urbanová ◽  
Tomáš Fürst ◽  
Pavel Ženčák ◽  
Pavel Tuček

Biomechanics of fracture fixation and testing of mechanical properties of bone/implant construct from the viewpoint of checking the strength and resistance ability to acting forces are of current interest. Computer modelling known as mathematical modelling is regarded as an alternative to mechanical testing of properties on a testing machine. As a result, we get a 3D model of a real object (i.e., implant for fracture fixation in our case), which can be exposed to deformation processes in the environment of the mathematical software in order to characterize forces acting on the implant and subsequently analyze the forces causing the implant failure (broken plate). The goal of this study was to employ mathematical-statistical modelling for determination of forces that caused failure (broken implant) of a five-hole titanium 4.5 mm Locking Compression Plate. This plate has been used for flexible bridging osteosynthesis of segmental femoral diaphyseal defect in a miniature pig to investigate bone healing after transplantation of mesenchymal stem cells in combination with biocompatible scaffolds. Mathematical modelling has been performed with COMSOL Multiphysics software. Numerical study that describes deformation processes taking place in implant failure demonstrates the possibilities of deformation of five-hole titanium 4.5 mm LCP in the case of exceeding the elastic limits of a material. Knowledge of the forces acting on implants used for fracture fixation acquired from mathematical modelling might be used in clinical practice in order to prevent undesirable implant failure.

2020 ◽  
Vol 8 (11) ◽  
pp. 902
Author(s):  
Alyona Lovska ◽  
Oleksij Fomin ◽  
Václav Píštěk ◽  
Pavel Kučera

A rapid development of economic relations between states has required an introduction of combined rail/ferry transportation. A feature of this type of transportation is the possibility of wagons traveling by sea on specially equipped ships—railway ferries. However, the transportation of wagons by sea is accompanied by damage to their structures. This follows from the fact that the wagons are not adapted to this type of transportation. In addition, the design of wagons does not consider the loads that can act on them during transportation by sea. In this connection, it is important to study the dynamic loading and strength of wagons during their transportation by sea. The current work investigated into dynamic load on the carrying structure of wagons transported by ferries using mathematical and computer modelling and defined accelerations on the wagon body. The adequacy of the models was checked with an F-test. The results of strength calculation for the carrying structure of a wagon made it possible to conclude that a typical fixation diagram does not provide the admissible range of strength parameters. The current work proposed an improved fixation diagram for cars on the deck with the viscous binder. The solution was substantiated by the results of the mathematical modelling of dynamic forces, strength, and stability of the carrying structure of a wagon on the deck. The results of the work will contribute to the creation of recommendations for the transportation of wagons on ferries. The research can contribute to safe transportation of wagons by ferries, and higher efficiency of the combined transportation


2015 ◽  
Vol 754-755 ◽  
pp. 1017-1022 ◽  
Author(s):  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin

.The paper present aspects about the obtaining of non-precious dental alloys (type CoCrMo and CoCrMoSi7), the determination of chemical composition by optical emission spectrometry and the experimental tests for determining the tensile strength, made on standard plate samples. The base material used in experiments was a commercial alloy, from CoCrMo system, which belongs to the class of dental non-precious alloys, intended to medical applications. The obtaining of studied alloy was made on arc re-melting installation, under vacuum, type MRF ABJ 900. The process followed to realize a rapid melting, with a maximum admissible current intensity. The samples for tests were obtained by casting in an electric arc furnace, under vacuum, in optimal conditions for melting and solidification and processing by electro-erosion, to eliminate all the disturbing factors which come by processing conditions for the samples. The determination of chemical composition for cobalt based alloys, by optical emission spectrometry, was made on SpectromaxX equipment with spark. The electrical discharge is made with the elimination of an energy quantity, fact which determine plasma forming and light issue. Tensile tests for standard samples, made from cobalt based alloy, was made on Instron 3382 testing machine, and assisted by computer. The obtained results are: elongation, elasticity modulus, tensile strength and offer complete information about the analyzed mechanical properties. For the certitude of obtained experimental results, the tests were made on samples with specific dimensions according ISO 6892-1:2009(E) standard, both for the tensile strength, and also machine operation.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


2010 ◽  
Vol 79 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Lucie Urbanová ◽  
Robert Srnec ◽  
Pavel Proks ◽  
Ladislav Stehlík ◽  
Zdeněk Florian ◽  
...  

The study deals with the determination of mechanical properties, namely resistance to bending forces, of flexible buttress osteosynthesis using two different bone-implant constructs stabilizing experimental segmental femoral bone defects (segmental ostectomy) in a miniature pig ex vivo model using 4.5 mm titanium LCP and a 3 mm intramedullary pin (“plate and rod” construct) (PR-LCP), versus the 4.5 mm titanium LCP alone (A-LCP). The “plate and rod” fixation (PR-LCP) of the segmental femoral defect is significantly more resistant (p < 0.05) to bending forces (200 N, 300 N, and 500 N) than LCP alone (A-LCP). Stabilisation of experimental segmental lesions of the femoral diaphysis in miniature pigs by flexible bridging osteosynthesis 4.5 mm LCP in combination with the “plate and rod” construct appears to be a suitable fixation of non-reducible fractures where considerable strain of the implants by bending forces can be assumed. These findings will be used in upcoming in vivo experiments in the miniature pig to investigate bone defect healing after transplantation of mesenchymal stem cells in combination with biocompatible scaffolds.


2007 ◽  
Vol 12 (3) ◽  
pp. 399-408 ◽  
Author(s):  
A. Oleinick ◽  
C. Amatore ◽  
O. Klymenko ◽  
I. Svir

In this work we report the results of the mathematical modelling of NO◦ -release by neurons considering a series of Gaussian bursts, together with its transport in the brain by diffusion. Our analysis relies on the NO◦ -release from a neuron monitored before, during and after its patch-clamp stimulation as detected by an ultramicroelectrode introduced into a slice of living rat’s brain. The parameters of the neuron activity function have been obtained by numerical fitting of experimental data with simulated theoretical results. Within our initial hypothesis about the Gaussian decomposition of NO◦ -release that allowed drawing qualitative and quantitative conclusions about the considered neuron activity function. It is noted that since the activity function can be readily modified this signal processing may be adapted to the treatment of other and maybe more physiologically relevant hypotheses.


2020 ◽  
Vol 82 (2) ◽  
pp. 215-224
Author(s):  
V.I. Erofeev ◽  
I.A. Samokhvalov

A numerical study of the survivability of the flange assembly is carried out upon reaching a critical load and in the presence of a defect in one of the design areas, taking into account the calculated values of the aerodynamic coefficients. An experiment is being carried out to determine the values of the wind load acting on the supporting legs of a metal tower. The calculation of the stressstrain state is performed using software system as SCAD Office and IDEA StatiCa 10.0. After calculating the forces in the core model of the structure, a threedimensional plate model of the assembly is formed and prepared for calculation. According to the results of the experiment, a graph was compiled with the values of aerodynamic coefficients, which were used in calculating the stressstrain state of the node. The analysis of the calculation results revealed that in the design (defectfree) state of the structure, the safety factor of the bearing units and elements is 35-40% (equivalent stresses were 165 MPa). If there is a defect in the metal structures of the belt in the region of the flange, the equivalent stresses increase to 247.6 MPa in the region of the cleavage (defective hole), thus, the margin in bearing capacity drops to 0.4%. As a result of the assessment of the survivability of the flange connection, it was revealed that the connection has a high potential survivability, in turn, the flange itself is able to work in the presence of some defects without reducing its bearing capacity to a critical level. The aerodynamic coefficients obtained in this work will determine the wind load on this type of profile and can be used in design calculations of tower structures for wind loads.


2001 ◽  
Vol 33 (4) ◽  
pp. 529-549 ◽  
Author(s):  
Y. LE STRAT ◽  
J. C. THALABARD

A large multicentre epidemiological study was carried out by WHO between 1991 and 1995 to analyse the duration of lactational amenorrhoea in relation to breast-feeding. The main results of this analysis, which used classical statistical modelling, have been already published. However, some specific aspects of the postpartum fertility amenorrhoea and breast-feeding covariates, and more specifically the observed progressive exhaustion of the breast-feeding inhibitory effect on the reproductive axis, may justify a closer look at the validity of the statistical tools. Indeed, as has already been emphasized, analysis of large longitudinal data sets in reproduction often faces three difficulties: (i) the precise determination of the event of interest, (ii) the way to handle the time evolution of both the studied variables and their effect on the event of interest and (iii) the often discrete nature of the data and the associated problem of tied events. The first objective of the present work was to give additional insights into the estimation and quantification of the dynamics of the effect of breast-feeding over time, considering this covariate either as fixed or time-dependent. The second objective was to show how to perform the analyses using corresponding adapted procedures in widely available statistical packages, without the need for acquiring particular programming skills.


Sign in / Sign up

Export Citation Format

Share Document