scholarly journals Study of the Blow Up of the Maximal Solution to the Three-Dimensional Magnetohydrodynamic System in Lei-Lin-Gevrey Spaces

2019 ◽  
Vol 43 (6) ◽  
pp. 2945-2952
Author(s):  
Ridha Selmi ◽  
Abdelkerim Chaabani ◽  
Mounia Zaabi

2011 ◽  
Vol 26 (32) ◽  
pp. 2437-2452 ◽  
Author(s):  
PENGHONG ZHONG ◽  
SHU WANG ◽  
SHENGTAO CHEN

In this paper, we construct the exact solution of two- or three-dimensional spacetime Landau–Lifshitz equation raised in the ferromagnetic materials. Under suitable transformations, some exact solutions are obtained in the radially symmetric coordinates and nonsymmetric coordinates. The type of solutions cover the finite time blow-up solution, vortex solution and periodic solution. In the end, we sketch some solutions and their spatial curvatures.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Zhaohui Dai ◽  
Xiaosong Wang ◽  
Lingrui Zhang ◽  
Wei Hou

The Boussinesq equations describe the three-dimensional incompressible fluid moving under the gravity and the earth rotation which come from atmospheric or oceanographic turbulence where rotation and stratification play an important role. In this paper, we investigate the Cauchy problem of the three-dimensional incompressible Boussinesq equations. By commutator estimate, some interpolation inequality, and embedding theorem, we establish a blow-up criterion of weak solutions in terms of the pressurepin the homogeneous Besov spaceḂ∞,∞0.


2016 ◽  
Vol 26 (11) ◽  
pp. 2111-2128 ◽  
Author(s):  
Bingran Hu ◽  
Y. Tao

This work considers the chemotaxis-growth system [Formula: see text] in a smoothly bounded domain [Formula: see text], with zero-flux boundary conditions, where [Formula: see text] and [Formula: see text] are given positive parameters. In striking contrast to the corresponding three-dimensional two-component chemo-taxis-growth system to which the global existence or blow-up of classical solutions largely remains open when [Formula: see text] is small, it is shown that whenever [Formula: see text] [Formula: see text] and [Formula: see text], for any given non-negative and suitably smooth initial data [Formula: see text] satisfying [Formula: see text], the system (⋆) admits a unique global classical solution that is uniformly-in-time bounded, which rules out the possibility of blow-up of solutions in finite time or in infinite time. Moreover, under the fully explicit condition [Formula: see text] the solution [Formula: see text] exponentially converges to the constant stationary solution [Formula: see text] in the norm of [Formula: see text] as [Formula: see text].


The present theoretical article considers the nonlinear interaction of oblique three dimensional Tollmien-Schlichting waves and induced or input longitudinal vortex motion, mainly for channel flow at large Reynolds numbers. Both the waves and the vortices are controlled by viscous-inviscid balancing but their respective flow structures are rather different because of the different typical timescales involved. This leads to the vortex-wave interaction being governed by nonlinear evolution equations on the vortex timescale, even though the wave amplitudes are notably small. The analogue in boundary-layer transition, addressed in a previous paper, is also re-considered here. Computational and analytical properties of the interaction equations for both channel flows and boundary layers are investigated, along with certain connections with companion studies of other vortex-wave interactions in channel flow. The nonlinear interactions in channel flow are found to lead to finitetime blow-up in amplitudes or to sustained vortex flow at large scaled times, depending on the input conditions. In particular, increasing the input amplitudes of the vortex or the wave can readily provoke blow-up even in the linearly stable regime; whereas in the case of sustained vortex flow new physical effects come into play on slightly longer timescales. Again, a very interesting feature is that the blowup response is found to be confined to a small range of wave angles near 45° relative to the original flow direction.


Author(s):  
Boris G. Konopelchenko ◽  
Giovanni Ortenzi

Abstract The paper is devoted to the analysis of the blow-ups of derivatives, gradient catastrophes and dynamics of mappings of ℝn → ℝn associated with the n-dimensional homogeneous Euler equation. Several characteristic features of the multi-dimensional case (n > 1) are described. Existence or nonexistence of blow-ups in different dimensions, boundness of certain linear combinations of blow-up derivatives and the first occurrence of the gradient catastrophe are among of them. It is shown that the potential solutions of the Euler equations exhibit blow-up derivatives in any dimenson n. Several concrete examples in two- and three-dimensional cases are analysed. Properties of ℝnu → ℝ nx mappings defined by the hodograph equations are studied, including appearance and disappearance of their singularities.


Sign in / Sign up

Export Citation Format

Share Document