scholarly journals Phytocompounds, Heavy Metal and Mineral Contents in honey Samples from Selected Markets in the Kumasi Metropolis

2018 ◽  
Vol 2 (5) ◽  
pp. 287 ◽  
Author(s):  
Marian Asantewah Nkansah ◽  
Mariam Shamsu–Deen ◽  
Francis Opoku

The present study sought to determine the content of calcium (Ca), magnesium (Mg), lead (Pb), iron (Fe), zinc (Zn) and eight phytocompounds in honey collected from twenty–three markets in the Kumasi Metropolis of Ghana. The mineral and heavy metal contents were analysed using the Atomic Absorption Spectrometry (novAA® 400P) and phytoconstituents by standard qualitative procedures. This study revealed that Mg and Ca concentrations ranged from 3.61–15.93 mg/kg and not detected–3.24 mg/kg, respectively. The concentrations of Ca and Mg were within the Recommended Dietary Allowance and Nutrient Reference Value respectively; an indication that the honey can be used as food source rich in Mg and Ca. The levels of Fe, Zn and Pb were lower than the limit of detection, indicating their safety from metal contaminants. A considerable number of phytoconstituents were detected. In general, the results obtained indicate that the honey samples collected from the Kumasi metropolis are of good quality.

2010 ◽  
Vol 8 (3) ◽  
pp. 617-625 ◽  
Author(s):  
Hossein Abdolmohammad-Zadeh ◽  
Elnaz Ebrahimzadeh

AbstractA rapid dispersive liquid-liquid micro-extraction (DLLME) methodology based on the application of 1-hexylpyridinium hexafluorophosphate [C6py][PF6] ionic liquid (IL) as an extractant solvent was applied for the pre-concentration of trace levels of cobalt prior to determination by flame atomic absorption spectrometry (FAAS). 1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) was employed as a chelator forming a Co-PMBP complex to extract cobalt ions from aqueous solution into the fine droplets of [C6py][PF6]. Some effective factors that influence the micro-extraction efficiency include the pH, the PMBP concentration, the amount of ionic liquid, the ionic strength, the temperature and the centrifugation time which were investigated and optimized. In the optimum experimental conditions, the limit of detection (3s) and the enrichment factor were 0.70 µg L−1 and 60, respectively. The relative standard deviation (RSD) for six replicate determinations of 50 µg L−1 Co was 2.36%. The calibration graph using the pre-concentration system was linear at levels 2–166 µg L−1 with a correlation coefficient of 0.9982. The applicability of the proposed method was evaluated by the determination of trace amounts of cobalt in several water samples.


Author(s):  
NE Fedorova ◽  
MV Egorova ◽  
AS Rodionov

Introduction. Various copper compounds are most widely used as plant protection agents in agriculture. From a hygienic point of view, information on excessive accumulation of copper in plants related to the use of a specific formulation of copper-containing pesticides is of interest. Our objective was to assess feasibility of increasing statistical significance of results of determining low residue levels of a copper-containing pesticide in apple samples by flame atomic absorption spectrometry using a high-resolution spectrometer in combination with developed approaches to sample preparation of plant-based foods, including homogenization with dry ice and microwave mineralization. Materials and methods: We analyzed 30 samples of apples collected in three different agro-climatic zones by flame atomic absorption spectrometry and electrothermal atomization atomic absorption spectrometry. Both methods were validated on 10 samples with added copper at levels 1-5 of the lower limit of quantitation. A statistical calculation was performed based on a simple Student’s test to assess the significance of differences between the results of measurements by flame and electrothermal techniques. Homogeneity of variances was estimated using the Fisher test to clarify the possibility of comparing two data sets. Results: The use of a technique of cryo-grinding and microwave decomposition in a microwave reactor in combination with a high-resolution continuum source atomic absorption spectrometry demonstrated a decrease in scattering and the limit of detection and better repeatability in the analysis of parallel samples. Results of statistical calculations confirmed the homogeneity of variances in data samples obtained for electrothermal and flame techniques, and the further Student’s t-test showed insignificant differences between the results of measurements obtained by FAAS and ET-AAS. Conclusion: Our findings prove that modern methods of sample preparation in combination with highly sensitive equipment allow a significant reduction in the limit of detection and scattering of test results.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoshan Huang ◽  
Mingxin Guan ◽  
Zhuliangzi Lu ◽  
Yiping Hang

A new sensitive method for antimony (III) determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed by using N-benzoyl-N-phenylhydroxylamine (BPHA) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) single drop microextraction. The single drop microextraction (SDMM) system is more competitive compared with other traditional extraction methods. Under the optimized conditions, the limit of detection (signal-to-noise ratio is 3) and the enrichment factor of antimony (III) are 0.01 μg·L−1 and 112, respectively. The relative standard deviation of the 0.5 μg·L−1 antimony (III) is 4.2% (n=6). The proposed method is rather sensitive to determinate trace antimony (III) in water.


2008 ◽  
Vol 91 (4) ◽  
pp. 865-870 ◽  
Author(s):  
Tayebeh Shamspur ◽  
Ali Mostafavi ◽  
Iran Sheikhshoaie

Abstract A simple, selective, reliable, and sensitive method for the determination of trace amounts of Cu2+ ions in aqueous samples is proposed. The Cu2+ ions are adsorbed quantitatively during the passage of aqueous samples through an octadecyl (C18) silica membrane disk modified by a symmetrical tetradentate Schiff base ligand, N,N'-bis(4-phenylazo salicylaldimine) 3-chloro-1,2-phenylenediamine (H2L). The retained Cu2+ ions were then stripped from the disk by elution with the minimal amount of nitric acid solution and determined by flame atomic absorption spectrometry. Various parameters, such as the effect of pH, flow rate, type and amount of eluent, and the effects of various cationic interferences on the recovery of ions were studied. The proposed method permitted large enrichment factors (about 550 and higher). The limit of detection of the method was 1.5 102 g/L. The use of the same disk modified with 6 mg H2L for at least 30 times showed no change in the recovery of Cu2+ ions. The accuracy of the method was confirmed by determination of Cu2+ ions in standard samples [National Institute of Environmental Studies (NIES) No. 2 and Nippon Keikinzoku Kogyo (NKK) No. 920]. The results demonstrated good agreement with certified values.


Sign in / Sign up

Export Citation Format

Share Document