scholarly journals Reconstructing in the Constraint Satisfaction Problem

10.29007/1j7l ◽  
2020 ◽  
Author(s):  
Evgeny Dantsin

It is a long-standing problem in graph theory to prove or disprove the \emph{reconstruction conjecture}, also known as the Kelly-Ulam conjecture. This conjecture states that every simple graph on at least three vertices is \emph{reconstructible}, which means that the isomorphism class of such a graph is uniquely determined by the isomorphism classes of its vertex-deleted subgraphs. In this talk, the notion of reconstructing is extended from graphs to instances of the constraint satisfaction problem (CSP): an instance is \emph{reconstructible} if its isomorphism class is uniquely determined by the isomorphism classes of its constraint-deleted subinstances. Questions of interest include not only questions about reconstructible CSP instances but also about CSP instances with reconstructible properties and parameters such as the existence of solutions or the number of solutions. As shown in the talk, such questions can be answered using techniques borrowed and adapted from graph reconstruction. In particular, Lov\'{a}sz's method of counting graph homomorphisms \cite{Lov72} is adapted to characterize CSP instances for which the number of solutions is reconstructible.

Author(s):  
Alexsander Andrade de Melo ◽  
Mateus De Oliveira Oliveira

A fundamental drawback that arises when one is faced with the task of deterministically certifying solutions to computational problems in PSPACE is the fact that witnesses may have superpolynomial size, assuming that NP is not equal to PSPACE. Therefore, the complexity of such a deterministic verifier may already be super-polynomially lower-bounded by the size of a witness. In this work, we introduce a new symbolic framework to address this drawback. More precisely, we introduce a PSPACE-hard notion of symbolic constraint satisfaction problem where both instances and solutions for these instances are implicitly represented by ordered decision diagrams (i.e. read-once, oblivious, branching programs). Our main result states that given an ordered decision diagram D of length k and width w specifying a CSP instance, one can determine in time f(w,w')*k whether there is an ODD of width at most w' encoding a solution for this instance. Intuitively, while the parameter w quantifies the complexity of the instance, the parameter w' quantifies the complexity of a prospective solution. We show that CSPs of constant width can be used to formalize natural PSPACE hard problems, such as reachability of configurations for Turing machines working in nondeterministic linear space. For such problems, our main result immediately yields an algorithm that determines the existence of solutions of width w in time g(w)*n, where g:N->N is a suitable computable function, and n is the size of the input.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manuel Bodirsky ◽  
Bertalan Bodor

Abstract Let K exp + \mathcal{K}_{{\operatorname{exp}}{+}} be the class of all structures 𝔄 such that the automorphism group of 𝔄 has at most c ⁢ n d ⁢ n cn^{dn} orbits in its componentwise action on the set of 𝑛-tuples with pairwise distinct entries, for some constants c , d c,d with d < 1 d<1 . We show that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of finite covers of first-order reducts of unary structures, and also that K exp + \mathcal{K}_{{\operatorname{exp}}{+}} is precisely the class of first-order reducts of finite covers of unary structures. It follows that the class of first-order reducts of finite covers of unary structures is closed under taking model companions and model-complete cores, which is an important property when studying the constraint satisfaction problem for structures from K exp + \mathcal{K}_{{\operatorname{exp}}{+}} . We also show that Thomas’ conjecture holds for K exp + \mathcal{K}_{{\operatorname{exp}}{+}} : all structures in K exp + \mathcal{K}_{{\operatorname{exp}}{+}} have finitely many first-order reducts up to first-order interdefinability.


Author(s):  
Robert Ganian ◽  
Andre Schidler ◽  
Manuel Sorge ◽  
Stefan Szeider

Treewidth and hypertree width have proven to be highly successful structural parameters in the context of the Constraint Satisfaction Problem (CSP). When either of these parameters is bounded by a constant, then CSP becomes solvable in polynomial time. However, here the order of the polynomial in the running time depends on the width, and this is known to be unavoidable; therefore, the problem is not fixed-parameter tractable parameterized by either of these width measures. Here we introduce an enhancement of tree and hypertree width through a novel notion of thresholds, allowing the associated decompositions to take into account information about the computational costs associated with solving the given CSP instance. Aside from introducing these notions, we obtain efficient theoretical as well as empirical algorithms for computing threshold treewidth and hypertree width and show that these parameters give rise to fixed-parameter algorithms for CSP as well as other, more general problems. We complement our theoretical results with experimental evaluations in terms of heuristics as well as exact methods based on SAT/SMT encodings.


Sign in / Sign up

Export Citation Format

Share Document