test pattern generation
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 9)

H-INDEX

31
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Tao Zhang ◽  
Jungmin Park ◽  
Mark Tehranipoor ◽  
Farimah Farahmandi


2021 ◽  
Author(s):  
Hsiao-Yin Tseng ◽  
I-Wei Chiu ◽  
Mu-Ting Wu ◽  
James Chien-Mo Li


2021 ◽  
Author(s):  
Xijiang Lin ◽  
Wu-Tung Cheng ◽  
Takeo Kobayashi ◽  
Andreas Glowatz


Author(s):  
Vishnupriya Shivakumar ◽  
◽  
C. Senthilpari ◽  
Zubaida Yusoff ◽  
◽  
...  

A linear feedback shift register (LFSR) has been frequently used in the Built-in Self-Test (BIST) designs for the pseudo-random test pattern generation. The higher volume of the test patterns and the lower test power consumption are the key features in the large complex designs. The motivation of this study is to generate efficient pseudo-random test patterns by the proposed LFSR and to be applied in the BIST designs. For the BIST designs, the proposed LFSR satisfied with the main strategies such as re-seeding and lesser test power consumption. However, the reseeding approach was utilized by the maximum-length pseudo-random test patterns. The objective of this paper is to propose a new LFSR circuit based on the proposed Reed-Solomon (RS) algorithm. The RS algorithm is created by considering the factors of the maximum length test patterns with a minimum distance over the time t. Also, it has been achieved an effective generation of test patterns over a stage of complexity order O (m log2 m), where m denotes the total number of message bits. We analysed our RS LFSR mathematically using the feedback polynomial function to decrease the area overhead occupied in the designs. The simulation works of the proposed RS LFSR bit-wise stages are simulated using the TSMC 130 nm on the Mentor Graphics IC design platform. Experimental results showed that the proposed LFSR achieved the effective pseudo-random test patterns with a lower test power consumption of 25.13 µW and 49.9 µs. In addition, proposed LFSR along with existing authors’ LFSR are applied in the BIST design to examine their power consumption. Ultimately, overall simulations operated with the highest operating frequency environment as 1.9 GHz.



2021 ◽  
Vol 23 (06) ◽  
pp. 1055-1060
Author(s):  
Pampapathi Yanna ◽  
◽  
Dr. Nithin M ◽  
Jeetpal Singh Chhabra ◽  
◽  
...  

The existing fault models like stuck-at, small delay defect, transition, and bridge fault models and their associated patterns are becoming less efficient, as the technology moves to increasingly smaller geometries. It is because traditional defect models target the faults only on IC gate boundaries, and the interconnects between the cells, but a significant population of defects (perhaps up to 50%) occurs within the cells or gates which are not specifically targeted by existing ATPG fault models. In this paper, a new ATPG methodology known as the Cell-aware test is implemented explicitly to target the defects caused by cell-internal open and short faults and improve the manufacturing test quality by minimizing the test escapes. This work explains how a Cell-Aware ATPG method performs a characterization on the GDSII data of library cell`s to produce a CAT library view (UDFM), test Pattern generation, and comparison between Traditional and Cell-Aware ATPG. The Cell-Aware ATPG is implemented using Tessent Testkompress, traditional ATPG is also developed to study and analyze both ATPG methodologies comparatively. Experiment results show a significant improvement in faults being targeted at an expense of an increase in pattern count and run-time. Obtained 71.28% and 59.38% test coverage for UDFM static and UDFM delay respectively. Achieved significant improvement in the test escapes with Cell-Aware Patterns when compared to traditional ATPG patterns.



Author(s):  
Nishant Agrawal

Quantum computing is an exciting new field in the intersection of computer science, physics and mathematics. It refines the central concepts from Quantum mechanics into its least difficult structures, peeling away the complications from the physical world. Any combinational circuit that has only one stuck at fault can be tested by applying a set of inputs that drive the circuit to verify the output response. The outputs of that circuit will be different from the one desired if the faults exist. This project describes a method of generating test patterns using the Boolean satisfaction method. First, the Boolean formula is constructed to express the Boolean difference between a fault-free circuit and a faulty circuit. Second, the Boolean satisfaction algorithm is applied to the formula in the previous step. The Grover algorithm is used to solve the Boolean satisfaction problem. The Boolean Satisfiability problem for Automatic Test Pattern Generation(ATPG) is implemented on IBM Quantum Experience. The Python program initially generates the boolean expression from the file and converts it into Conjunctive Normal Form(CNF) which is passed on to Grover Oracle and runs on IBM simulator and produces excellent results on combinational circuits for test pattern generation with a quadratic speedup. Grover’s Algorithm on this problem has a run time of O(√N).





Sign in / Sign up

Export Citation Format

Share Document