scholarly journals Mining approximate frequent dense modules from multiple gene expression datasets

10.29007/d87q ◽  
2020 ◽  
Author(s):  
San Ha Seo ◽  
Saeed Salem

Large amount of gene expression data has been collected for various environmental and biological conditions. Extracting co-expression networks that are recurrent in multiple co-expression networks has been shown promising in functional gene annotation and biomarkers discovery. Frequent subgraph mining reports a large number of subnetworks. In this work, we propose to mine approximate dense frequent subgraphs. Our proposed approach reports representative frequent subgraphs that are also dense. Our experiments on real gene coexpression networks show that frequent subgraphs are biologically interesting as evidenced by the large percentage of biologically enriched frequent dense subgraphs.

2018 ◽  
Vol 8 (1) ◽  
pp. 194-209 ◽  
Author(s):  
Büsra Güvenoglu ◽  
Belgin Ergenç Bostanoglu

AbstractData mining is a popular research area that has been studied by many researchers and focuses on finding unforeseen and important information in large databases. One of the popular data structures used to represent large heterogeneous data in the field of data mining is graphs. So, graph mining is one of the most popular subdivisions of data mining. Subgraphs that are more frequently encountered than the user-defined threshold in a database are called frequent subgraphs. Frequent subgraphs in a database can give important information about this database. Using this information, data can be classified, clustered and indexed. The purpose of this survey is to examine frequent subgraph mining algorithms (i) in terms of frequent subgraph discovery process phases such as candidate generation and frequency calculation, (ii) categorize the algorithms according to their general attributes such as input type, dynamicity of graphs, result type, algorithmic approach they are based on, algorithmic design and graph representation as well as (iii) to discuss the performance of algorithms in comparison to each other and the challenges faced by the algorithms recently.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Krzysztof Borowski ◽  
Jung Soh ◽  
Christoph W. Sensen

SummaryThe need for novel methods of visualizing microarray data is growing. New perspectives are beneficial to finding patterns in expression data. The Bluejay genome browser provides an integrative way of visualizing gene expression datasets in a genomic context. We have now developed the functionality to display multiple microarray datasets simultaneously in Bluejay, in order to provide researchers with a comprehensive view of their datasets linked to a graphical representation of gene function. This will enable biologists to obtain valuable insights on expression patterns, by allowing them to analyze the expression values in relation to the gene locations as well as to compare expression profiles of related genomes or of di erent experiments for the same genome.


2009 ◽  
Vol 45 (2-3) ◽  
pp. 163-171 ◽  
Author(s):  
Marco Muselli ◽  
Massimiliano Costacurta ◽  
Francesca Ruffino

2017 ◽  
Author(s):  
Craig Disselkoen ◽  
Nathan Hekman ◽  
Brian Gilbert ◽  
Sydney Benson ◽  
Matthew Anderson ◽  
...  

AbstractAn important question in many biological applications, is to estimate or classify gene activity states (active or inactive) based on genome-wide transcriptomics data. Recently, we proposed a Bayesian method, titled MultiMM, which showed superior results compared to existing methods. In short, MultiMM performed better than existing methods on both simulated and real gene expression data, confirming well-known biological results and yielding better agreement with fluxomics data. Despite these promising results, MultiMM has numerous limitations. First, MultiMM leverages co-regulatory models to improve activity state estimates, but information about co-regulation is incorporated in a manner that assumes that networks are known with certainty. Second, MultiMM assumes that genes that change states in the dataset can be distinguished with certainty from those that remain in one state. Third, the model can be sensitive to extreme measures (outliers) of gene expression. In this manuscript, we propose a modified Bayesian approach, which addresses these three limitations by improving outlier handling and by explicitly modeling network and other uncertainty yielding improved gene activity state estimates when compared to MultiMM.


2021 ◽  
Author(s):  
David Chisanga ◽  
Yang Liao ◽  
Wei Shi

Abstract Background: RNA sequencing is currently the method of choice for genome-wide profiling of gene expression. A popular approach to quantify expression levels of genes from RNA-seq data is to map reads to a reference genome and then count mapped reads to each gene. Gene annotation data, which include chromosomal coordinates of exons for tens of thousands of genes, are required for this quantification process. There are several major sources of gene annotations that can be used for quantification, such as Ensembl and RefSeq databases. However, there is very little understanding of the effect that the choice of annotation has on the accuracy of gene expression quantification in an RNA-seq analysis.Results: In this paper, we present results from our comparison of Ensembl and RefSeq human annotations on their impact on gene expression quantification using a benchmark RNA-seq dataset generated by the SEquencing Quality Control (SEQC) consortium. We show that the use of RefSeq gene annotation models led to better quantification accuracy, based on the correlation with ground truths including expression data from >800 real-time PCR validated genes, known titration ratios of gene expression and microarray expression data. We also found that the recent expansion of the RefSeq annotation has led to a decrease in its annotation accuracy. Finally, we demonstrated that the RNA-seq quantification differences observed between different annotations were not affected by the use of different normalization methods.Conclusion: In conclusion, our study found that the use of the conservative RefSeq gene annotation yields better RNA-seq quantification results than the more comprehensive Ensembl annotation. We also found that, surprisingly, the recent expansion of the RefSeq database, which was primarily driven by the incorporation of sequencing data into the gene annotation process, resulted in a reduction in the accuracy of RNA-seq quantification.


2021 ◽  
Author(s):  
David Chisanga ◽  
Yang Liao ◽  
Wei Shi

RNA sequencing is currently the method of choice for genome-wide profiling of gene expression. A popular approach to quantify expression levels of genes from RNA-seq data is to map reads to a reference genome and then count mapped reads to each gene. Gene annotation data, which include chromosomal coordinates of exons for tens of thousands of genes, are required for this quantification process. There are several major sources of gene annotations that can be used for quantification, such as Ensembl and RefSeq databases. However, there is very little understanding of the effect that the choice of annotation has on the accuracy of gene expression quantification in an RNA-seq analysis. In this paper, we present results from our comparison of Ensembl and RefSeq human annotations on their impact on gene expression quantification using a benchmark RNA-seq dataset generated by the SEquencing Quality Control (SEQC) consortium. We show that the use of RefSeq gene annotation models led to better quantification accuracy, based on the correlation with ground truths including expression data from $>$800 real-time PCR validated genes, known titration ratios of gene expression and microarray expression data. We also found that the recent expansion of the RefSeq annotation has led to a decrease in its annotation accuracy. Finally, we demonstrated that the RNA-seq quantification differences observed between different annotations were not affected by the use of different normalization methods.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Kayla A. Johnson ◽  
Arjun Krishnan

Abstract Background Constructing gene coexpression networks is a powerful approach for analyzing high-throughput gene expression data towards module identification, gene function prediction, and disease-gene prioritization. While optimal workflows for constructing coexpression networks, including good choices for data pre-processing, normalization, and network transformation, have been developed for microarray-based expression data, such well-tested choices do not exist for RNA-seq data. Almost all studies that compare data processing and normalization methods for RNA-seq focus on the end goal of determining differential gene expression. Results Here, we present a comprehensive benchmarking and analysis of 36 different workflows, each with a unique set of normalization and network transformation methods, for constructing coexpression networks from RNA-seq datasets. We test these workflows on both large, homogenous datasets and small, heterogeneous datasets from various labs. We analyze the workflows in terms of aggregate performance, individual method choices, and the impact of multiple dataset experimental factors. Our results demonstrate that between-sample normalization has the biggest impact, with counts adjusted by size factors producing networks that most accurately recapitulate known tissue-naive and tissue-aware gene functional relationships. Conclusions Based on this work, we provide concrete recommendations on robust procedures for building an accurate coexpression network from an RNA-seq dataset. In addition, researchers can examine all the results in great detail at https://krishnanlab.github.io/RNAseq_coexpression to make appropriate choices for coexpression analysis based on the experimental factors of their RNA-seq dataset.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Shailesh Tripathi ◽  
Jason Lloyd-Price ◽  
Andre Ribeiro ◽  
Olli Yli-Harja ◽  
Matthias Dehmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document