scholarly journals ARCH-COMP19 Repeatability Evaluation Report

10.29007/wbl3 ◽  
2019 ◽  
Author(s):  
Taylor T. Johnson

This report presents the results of the repeatability evaluation for the 3rd International Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP'19). The competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019, affiliated with the Cyber-Physical Systems and Internet of Things (CPS-IoT Week'19). In its third edition, twenty-five tools submitted artifacts through a Git repository for the repeatability evaluation, applied to solve benchmark problems for eight competition categories. The majority of participants adhered to new requirements for this year's repeatability evaluation, namely to submit scripts to automatically install and execute tools in containerized virtual environments (specifically Dockerfiles to execute within Docker). The repeatability results represent a snapshot of the current landscape of tools and the types of benchmarks for which they are particularly suited and for which others may repeat their analyses. Due to the diversity of problems in verification of continuous and hybrid systems, as well as basing on standard practice in repeatability evaluations, we evaluate the tools with pass and/or failing being repeatable.

10.29007/n9t3 ◽  
2018 ◽  
Author(s):  
Taylor T. Johnson

This report presents the results of the repeatability evaluation for the 2nd International Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP'18). The competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2018. In its second edition, twenty-five tools submitted artifacts for the repeatability evaluation and applied to solve benchmark problems for seven competition categories. The repeatability results represent a snapshot of the current landscape of tools and the types of benchmarks for which they are particularly suited and for which others may repeat their analyses. Due to the diversity of problems in verification of continuous and hybrid systems, as well as basing on standard practice in repeatability evaluations, we evaluate the tools with pass and/or failing being repeatable.


10.29007/8dp4 ◽  
2020 ◽  
Author(s):  
Taylor T Johnson

This report presents the results of the repeatability evaluation for the 4th International Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP’20). The competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020, affiliated with the IFAC World Congress. In its fourth edition, twenty-eight tools submitted artifacts through a Git repository for the repeatability evaluation, applied to solve benchmark problems for seven competition categories. The majority of participants adhered to the requirements for this year’s repeatability evaluation, namely to submit scripts to automatically install and execute tools in containerized virtual environments (specifically Dockerfiles to execute within Docker), and several categories used performance evaluation information from a common execution platform. The repeatability results represent a snapshot of the current landscape of tools and the types of benchmarks for which they are particularly suited and for which others may repeat their analyses. Due to the diversity of problems in verification of continuous and hybrid systems, as well as basing on standard practice in repeatability evaluations, we evaluate the tools with pass and/or failing being repeatable.


10.29007/7hvk ◽  
2018 ◽  
Author(s):  
Taylor T. Johnson

This report presents the results of the repeatability evaluation for a friendly competition for formal verification of continuous and hybrid systems. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2017. In its first edition, thirteen tools have been applied to solve benchmark problems for the six competition categories, of which, ten tools were evaluated and passed the repeatability evaluation. The repeatability results represent a snapshot of the current landscape of tools and the types of benchmarks for which they are particularly suited and for which others may repeat their analyses. Due to the diversity of problems in verification of continuous and hybrid systems, as well as basing on standard practice in repeatability evaluations, we evaluate the tools with pass and/or failing being repeatable. These re- sults probably provide the most complete assessment of tools for the safety verification of continuous and hybrid systems up to this date.


2021 ◽  
Vol 113 (7-8) ◽  
pp. 2395-2412
Author(s):  
Baudouin Dafflon ◽  
Nejib Moalla ◽  
Yacine Ouzrout

AbstractThis work aims to review literature related to the latest cyber-physical systems (CPS) for manufacturing in the revolutionary Industry 4.0 for a comprehensive understanding of the challenges, approaches, and used techniques in this domain. Different published studies on CPS for manufacturing in Industry 4.0 paradigms through 2010 to 2019 were searched and summarized. We, then, analyzed the studies at a different granularity level inspecting the title, abstract, and full text to include in the prospective study list. Out of 626 primarily extracted relevant articles, we scrutinized 78 articles as the prospective studies on CPS for manufacturing in Industry 4.0. First, we analyzed the articles’ context to identify the major components along with their associated fine-grained constituents of Industry 4.0. Then, we reviewed different studies through a number of synthesized matrices to narrate the challenges, approaches, and used techniques as the key-enablers of the CPS for manufacturing in Industry 4.0. Although the key technologies of Industry 4.0 are the CPS, Internet of Things (IoT), and Internet of Services (IoS), the human component (HC), cyber component (CC), physical component (PC), and their HC-CC, CC-PC, and HC-PC interfaces need to be standardized to achieve the success of Industry 4.0.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


2021 ◽  
Vol 58 ◽  
pp. 176-192
Author(s):  
Diego G.S. Pivoto ◽  
Luiz F.F. de Almeida ◽  
Rodrigo da Rosa Righi ◽  
Joel J.P.C. Rodrigues ◽  
Alexandre Baratella Lugli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document