scholarly journals Secure state estimation for Cyber-Physical Systems

10.29007/z1sj ◽  
2018 ◽  
Author(s):  
Gabriella Fiore

In Cyber-Physical Systems (CPSs), physical processes, computational resources and communi- cation capabilities are tightly interconnected. Traditionally, the physical components of a CPS are described by means of differential or difference equations, while the cyber components are modeled by means of discrete dynamics. Therefore, hybrid systems, that are heterogeneous dynamical sys- tems characterized by the interaction of continuous and discrete dynamics, are a powerful modeling framework to deal with CPSs. Motivated by the great importance of security issues for CPSs, we characterize the observability and diagnosability properties for hybrid systems in the general case where the available information may be corrupted by an external attacker. Then, as CPSs are found in a wide range of applications, we demonstrate how to estimate the continuous state by simulating two scenarios: the control of a Direct Current (DC) Microgrid, and the control of a network of Unmanned Aerial Vehicles (UAVs) cooperatively transporting a payload.

Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Preetesh K. Yadav ◽  
Sourav Pareek ◽  
Saif Shakeel ◽  
Jitendra Kumar ◽  
Ashutosh Kumar Singh

2021 ◽  
Author(s):  
Max Jonas Friese

Based on advances in scheduling analysis in the 1970s, a whole area of research has evolved: formal end-to-end latency analysis in real-time systems. Although multiple approaches from the scientific community have successfully been applied in industrial practice, a gap is emerging between the means provided by formally backed approaches and the need of the automotive industry where cyber-physical systems have taken over from classic embedded systems. They are accompanied by a shift to heterogeneous platforms build upon multicore architectures. Scien- tific techniques are often still based on too simple system models and estimations on important end-to-end latencies have only been tightened recently. To this end, we present an expressive system model and formally describe the problem of end-to-end latency analysis in modern automotive cyber-physical systems. Based on this we examine approaches to formally estimate tight end-to-end latencies in Chapter 4 and Chapter 5. The de- veloped approaches include a wide range of relevant systems. We show that our approach for the estimation of latencies of task chains dominates existing approaches in terms of tightness of the results. In the last chapter we make a brief digression to measurement analysis since measuring and simulation is an important part of verification in current industrial practice.


Author(s):  
Lee T. Maccarone ◽  
Daniel G. Cole

Abstract Cyber-physical systems are engineered systems that rely on the integration of physical processes and computational resources. While this integration enables advanced techniques for monitoring and controlling systems, it also exposes the physical process to cyber-threats. An attacker who is able to access control inputs and mask measurements could damage the system while remaining undetected. By masking certain measurement signals, an attacker may be able to render a portion of the state space unobservable, meaning that it is impossible to estimate or infer the value of those states. This is called an observability attack. A game-theoretic approach is presented to analyze observability attacks. The attacker's strategy set includes all possible combinations of masked measurements. The defender's strategy set includes all possible combinations of measurement reinforcements. The attacker's and defender's utilities are quantified using the responses of the observable and unobservable states. The observability attack game is analyzed for a nuclear balance of plant system. Multiple pure-strategy and mixed-strategy Nash equilibria are identified, and the conditions for their existence are presented. Using this procedure, a security and control engineer can select the optimal strategy to defend a cyber-physical system from observability attacks.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yuan ◽  
Xiuchuan Tang ◽  
Wei Zhou ◽  
Wei Pan ◽  
Xiuting Li ◽  
...  

Abstract Cyber-physical systems embed software into the physical world. They appear in a wide range of applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems have proved resistant to modeling due to their intrinsic complexity arising from the combination of physical and cyber components and the interaction between them. This study proposes a general framework for discovering cyber-physical systems directly from data. The framework involves the identification of physical systems as well as the inference of transition logics. It has been applied successfully to a number of real-world examples. The novel framework seeks to understand the underlying mechanism of cyber-physical systems as well as make predictions concerning their state trajectories based on the discovered models. Such information has been proven essential for the assessment of the performance of cyber-physical systems; it can potentially help debug in the implementation procedure and guide the redesign to achieve the required performance.


Sign in / Sign up

Export Citation Format

Share Document