scholarly journals Forcing Independent Domination Number of a Graph

2019 ◽  
Vol 12 (4) ◽  
pp. 1371-1381
Author(s):  
Cris Laquibla Armada ◽  
Sergio, Jr. R. Canoy

In this paper, we obtain the forcing independent domination number of some special graphs. Further, we determine the forcing independent domination number of graphs  under some binary operations such join, corona and lexicographic product of two graphs.

2021 ◽  
Vol 14 (3) ◽  
pp. 1098-1107
Author(s):  
Cris Laquibla Armada

In this paper, the total dr-power domination number of graphs such as complete bipartite graph, generalized fan and generalized wheel are obtained. The forcing total dr-power domination number of graphs resulting from some binary operations such as join, corona and lexicographic product of graphs were determined.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850075
Author(s):  
Yamilita M. Pabilona ◽  
Helen M. Rara

Let [Formula: see text] be a simple graph. A hop dominating set [Formula: see text] is called a connected hop dominating set of [Formula: see text] if the induced subgraph [Formula: see text] of [Formula: see text] is connected. The smallest cardinality of a connected hop dominating set of [Formula: see text], denoted by [Formula: see text], is called the connected hop domination number of [Formula: see text]. In this paper, we characterize the connected hop dominating sets in the join, corona and lexicographic product of graphs and determine the corresponding connected hop domination number of these graphs. The study of these concepts is motivated with a social network application.


2021 ◽  
Vol 14 (3) ◽  
pp. 803-815
Author(s):  
Raicah Cayongcat Rakim ◽  
Helen M Rara

Let G = (V (G), E(G)) be a simple graph. A set S ⊆ V (G) is a perfect hop dominating set of G if for every v ∈ V (G) \ S, there is exactly one vertex u ∈ S such that dG(u, v) = 2. The smallest cardinality of a perfect hop dominating set of G is called the perfect hop domination number of G, denoted by γph(G). A perfect hop dominating set S ⊆ V (G) is called a total perfect hop dominating set of G if for every v ∈ V (G), there is exactly one vertex u ∈ S such that dG(u, v) = 2. The total perfect hop domination number of G, denoted by γtph(G), is the smallest cardinality of a total perfect hop dominating set of G. Any total perfect hop dominating set of G of cardinality γtph(G) is referred to as a γtph-set of G. In this paper, we characterize the total perfect hop dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding total perfect hop domination number.


2017 ◽  
Vol 4 (8) ◽  
pp. 25-37 ◽  
Author(s):  
Doug Chatham

Abstract Given a (symmetrically-moving) piece from a chesslike game, such as shogi, and an n×n board, we can form a graph with a vertex for each square and an edge between two vertices if the piece can move from one vertex to the other. We consider two pieces from shogi: the dragon king, which moves like a rook and king from chess, and the dragon horse, which moves like a bishop and rook from chess. We show that the independence number for the dragon kings graph equals the independence number for the queens graph. We show that the (independent) domination number of the dragon kings graph is n − 2 for 4 ≤ n ≤ 6 and n − 3 for n ≥ 7. For the dragon horses graph, we show that the independence number is 2n − 3 for n ≥ 5, the domination number is at most n−1 for n ≥ 4, and the independent domination number is at most n for n ≥ 5.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


Author(s):  
Reynaldo V. Mollejon ◽  
Sergio R. Canoy

Let [Formula: see text] be a connected graph of order [Formula: see text]. A subset [Formula: see text] is a double hop dominating set (or a double [Formula: see text]-step dominating set) if [Formula: see text], where [Formula: see text], for each [Formula: see text]. The smallest cardinality of a double hop dominating set of [Formula: see text], denoted by [Formula: see text], is the double hop domination number of [Formula: see text]. In this paper, we investigate the concept of double hop dominating sets and study it for graphs resulting from some binary operations.


Sign in / Sign up

Export Citation Format

Share Document