scholarly journals Forcing Total dr-Power Domination Number of Graphs Under Some Binary Operations

2021 ◽  
Vol 14 (3) ◽  
pp. 1098-1107
Author(s):  
Cris Laquibla Armada

In this paper, the total dr-power domination number of graphs such as complete bipartite graph, generalized fan and generalized wheel are obtained. The forcing total dr-power domination number of graphs resulting from some binary operations such as join, corona and lexicographic product of graphs were determined.

2018 ◽  
Vol 2 (2) ◽  
pp. 72
Author(s):  
H Hendy ◽  
Kiki A. Sugeng ◽  
A.N.M Salman ◽  
Nisa Ayunda

<p>Let <span class="math"><em>H</em></span> and <span class="math"><em>G</em></span> be two simple graphs. The concept of an <span class="math"><em>H</em></span>-magic decomposition of <span class="math"><em>G</em></span> arises from the combination between graph decomposition and graph labeling. A decomposition of a graph <span class="math"><em>G</em></span> into isomorphic copies of a graph <span class="math"><em>H</em></span> is <span class="math"><em>H</em></span>-magic if there is a bijection <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>) → {1, 2, ..., ∣<em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>)∣}</span> such that the sum of labels of edges and vertices of each copy of <span class="math"><em>H</em></span> in the decomposition is constant. A lexicographic product of two graphs <span class="math"><em>G</em><sub>1</sub></span> and <span class="math"><em>G</em><sub>2</sub>, </span> denoted by <span class="math"><em>G</em><sub>1</sub>[<em>G</em><sub>2</sub>], </span> is a graph which arises from <span class="math"><em>G</em><sub>1</sub></span> by replacing each vertex of <span class="math"><em>G</em><sub>1</sub></span> by a copy of the <span class="math"><em>G</em><sub>2</sub></span> and each edge of <span class="math"><em>G</em><sub>1</sub></span> by all edges of the complete bipartite graph <span class="math"><em>K</em><sub><em>n</em>, <em>n</em></sub></span> where <span class="math"><em>n</em></span> is the order of <span class="math"><em>G</em><sub>2</sub>.</span> In this paper we provide a sufficient condition for <span class="math">$\overline{C_{n}}[\overline{K_{m}}]$</span> in order to have a <span class="math">$P_{t}[\overline{K_{m}}]$</span>-magic decompositions, where <span class="math"><em>n</em> &gt; 3, <em>m</em> &gt; 1, </span> and <span class="math"><em>t</em> = 3, 4, <em>n</em> − 2</span>.</p>


2018 ◽  
Vol 11 (05) ◽  
pp. 1850075
Author(s):  
Yamilita M. Pabilona ◽  
Helen M. Rara

Let [Formula: see text] be a simple graph. A hop dominating set [Formula: see text] is called a connected hop dominating set of [Formula: see text] if the induced subgraph [Formula: see text] of [Formula: see text] is connected. The smallest cardinality of a connected hop dominating set of [Formula: see text], denoted by [Formula: see text], is called the connected hop domination number of [Formula: see text]. In this paper, we characterize the connected hop dominating sets in the join, corona and lexicographic product of graphs and determine the corresponding connected hop domination number of these graphs. The study of these concepts is motivated with a social network application.


2021 ◽  
Vol 14 (3) ◽  
pp. 803-815
Author(s):  
Raicah Cayongcat Rakim ◽  
Helen M Rara

Let G = (V (G), E(G)) be a simple graph. A set S ⊆ V (G) is a perfect hop dominating set of G if for every v ∈ V (G) \ S, there is exactly one vertex u ∈ S such that dG(u, v) = 2. The smallest cardinality of a perfect hop dominating set of G is called the perfect hop domination number of G, denoted by γph(G). A perfect hop dominating set S ⊆ V (G) is called a total perfect hop dominating set of G if for every v ∈ V (G), there is exactly one vertex u ∈ S such that dG(u, v) = 2. The total perfect hop domination number of G, denoted by γtph(G), is the smallest cardinality of a total perfect hop dominating set of G. Any total perfect hop dominating set of G of cardinality γtph(G) is referred to as a γtph-set of G. In this paper, we characterize the total perfect hop dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding total perfect hop domination number.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050066
Author(s):  
Enrico L. Enriquez ◽  
Albert D. Ngujo

Let [Formula: see text] be a connected simple graph. A set [Formula: see text] is a doubly connected dominating set if it is dominating and both [Formula: see text] and [Formula: see text] are connected. A nonempty subset [Formula: see text] of the vertex set [Formula: see text] is a clique in [Formula: see text] if the graph [Formula: see text] induced by [Formula: see text] is complete. A clique dominating set [Formula: see text] of [Formula: see text] is a clique doubly connected dominating set if [Formula: see text] is a doubly connected dominating set of [Formula: see text]. The clique doubly connected domination number of [Formula: see text], denoted by [Formula: see text], is the smallest cardinality of a clique doubly connected dominating set [Formula: see text] of [Formula: see text]. In this paper, we give the characterization of the clique doubly connected dominating set and the clique doubly connected domination number in the join (and lexicographic product) of two graphs.


2020 ◽  
Vol 54 (4) ◽  
pp. 1077-1086
Author(s):  
Arezoo N. Ghameshlou ◽  
Athena Shaminezhad ◽  
Ebrahim Vatandoost ◽  
Abdollah Khodkar

Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G), ∑x∈NG[v] f(x)≥1. The value of ω(f) = ∑x∈V(G) f(x) is called the weight of f. The signed domination number of G is the minimum weight of a signed dominating function of G. In this paper, we initiate the study of the signed domination numbers of Mycielski graphs and find some upper bounds for this parameter. We also calculate the signed domination number of the Mycielski graph when the underlying graph is a star, a wheel, a fan, a Dutch windmill, a cycle, a path or a complete bipartite graph.


2017 ◽  
Vol 48 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Sergio Jr. Rosales Canoy ◽  
Carlito Bancoyo Balandra

A set $S\subseteq V(G)$ is a liar's dominating set ($lds$) of graph $G$ if $|N_G[v]\cap S|\geq 2$ for every $v\in V(G)$ and $|(N_G[u]\cup N_G[v])\cap S|\geq 3$ for any two distinct vertices $u,v \in V(G)$. The liar's domination number of $G$, denoted by $\gamma_{LR}(G)$, is the smallest cardinality of a liar's dominating set of $G$. In this paper we study the concept of liar's domination in the join, corona, and lexicographic product of graphs.


2021 ◽  
Vol 14 (3) ◽  
pp. 829-841
Author(s):  
Gerald Bacon Monsanto ◽  
Helen M. Rara

Let G be a connected graph. Brigham et al. [3] defined a resolving dominating setas a set S of vertices of a connected graph G that is both resolving and dominating. A set S ⊆ V (G) is a resolving restrained dominating set of G if S is a resolving dominating set of G and S = V (G) or hV (G) \ Si has no isolated vertex. In this paper, we characterize the resolving restrained dominating sets in the join, corona and lexicographic product of graphs and determine the resolving restrained domination number of these graphs.


2019 ◽  
Vol 12 (4) ◽  
pp. 1371-1381
Author(s):  
Cris Laquibla Armada ◽  
Sergio, Jr. R. Canoy

In this paper, we obtain the forcing independent domination number of some special graphs. Further, we determine the forcing independent domination number of graphs  under some binary operations such join, corona and lexicographic product of two graphs.


2015 ◽  
Vol 46 (1) ◽  
pp. 51-60
Author(s):  
Sergio R.osales Canoy,Jr. ◽  
Gina A. Malacas

In this paper we characterize the differentiating-dominating sets in the join, corona, and lexicographic product of graphs. We also determine bounds or the exact differentiating-domination numbers of these graphs.


Sign in / Sign up

Export Citation Format

Share Document